Hans K. C. Beukers, Christopher Waas, Matteo Pasini, Hendrik B. van Ommen, Zarije Ademi, Mariagrazia Iuliano, Nina Codreanu, Julia M. Brevoord, Tim Turan, Tim H. Taminiau, Ronald Hanson
{"title":"Control of Solid-State Nuclear Spin Qubits Using an Electron Spin- 1/2","authors":"Hans K. C. Beukers, Christopher Waas, Matteo Pasini, Hendrik B. van Ommen, Zarije Ademi, Mariagrazia Iuliano, Nina Codreanu, Julia M. Brevoord, Tim Turan, Tim H. Taminiau, Ronald Hanson","doi":"10.1103/physrevx.15.021011","DOIUrl":null,"url":null,"abstract":"Solid-state quantum registers consisting of optically active electron spins with nearby nuclear spins are promising building blocks for future quantum technologies. For electron spin-1 registers, dynamical decoupling (DD) quantum gates have been developed that enable the precise control of multiple nuclear spin qubits. However, for the important class of electron spin-1</a:mn>/</a:mo>2</a:mn></a:mrow></a:math> systems, this control method suffers from intrinsic selectivity limitations, resulting in reduced nuclear spin gate fidelities. Here, we demonstrate improved control of single nuclear spins by an electron spin-<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mn>1</c:mn><c:mo>/</c:mo><c:mn>2</c:mn></c:mrow></c:math> using dynamically decoupled radio-frequency (DDRF) gates. We make use of the electron spin-<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mn>1</e:mn><e:mo>/</e:mo><e:mn>2</e:mn></e:mrow></e:math> of a diamond tin-vacancy center, showing high-fidelity single-qubit gates, single-shot readout, and spin coherence beyond a millisecond. The DD control is used as a benchmark to observe and control a single <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mmultiscripts><g:mrow><g:mn>3</g:mn></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>1</g:mn></g:mrow></g:mmultiscripts><g:mi mathvariant=\"normal\">C</g:mi></g:mrow></g:math> nuclear spin. Using the DDRF control method, we demonstrate improved control on that spin. In addition, we find and control an additional nuclear spin that is insensitive to the DD control method. Using these DDRF gates, we show entanglement between the electron and the nuclear spin with 72(3)% state fidelity. Our extensive simulations indicate that DDRF gate fidelities well in excess are feasible. Finally, we employ time-resolved photon detection during readout to quantify the hyperfine coupling for the electron’s optically excited state. Our work provides key insights into the challenges and opportunities for nuclear spin control in electron spin-<j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mrow><j:mn>1</j:mn><j:mo>/</j:mo><j:mn>2</j:mn></j:mrow></j:math> systems, opening the door to multiqubit experiments on these promising qubit platforms. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"183 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021011","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-state quantum registers consisting of optically active electron spins with nearby nuclear spins are promising building blocks for future quantum technologies. For electron spin-1 registers, dynamical decoupling (DD) quantum gates have been developed that enable the precise control of multiple nuclear spin qubits. However, for the important class of electron spin-1/2 systems, this control method suffers from intrinsic selectivity limitations, resulting in reduced nuclear spin gate fidelities. Here, we demonstrate improved control of single nuclear spins by an electron spin-1/2 using dynamically decoupled radio-frequency (DDRF) gates. We make use of the electron spin-1/2 of a diamond tin-vacancy center, showing high-fidelity single-qubit gates, single-shot readout, and spin coherence beyond a millisecond. The DD control is used as a benchmark to observe and control a single 31C nuclear spin. Using the DDRF control method, we demonstrate improved control on that spin. In addition, we find and control an additional nuclear spin that is insensitive to the DD control method. Using these DDRF gates, we show entanglement between the electron and the nuclear spin with 72(3)% state fidelity. Our extensive simulations indicate that DDRF gate fidelities well in excess are feasible. Finally, we employ time-resolved photon detection during readout to quantify the hyperfine coupling for the electron’s optically excited state. Our work provides key insights into the challenges and opportunities for nuclear spin control in electron spin-1/2 systems, opening the door to multiqubit experiments on these promising qubit platforms. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.