Control of Solid-State Nuclear Spin Qubits Using an Electron Spin- 1/2

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Hans K. C. Beukers, Christopher Waas, Matteo Pasini, Hendrik B. van Ommen, Zarije Ademi, Mariagrazia Iuliano, Nina Codreanu, Julia M. Brevoord, Tim Turan, Tim H. Taminiau, Ronald Hanson
{"title":"Control of Solid-State Nuclear Spin Qubits Using an Electron Spin- 1/2","authors":"Hans K. C. Beukers, Christopher Waas, Matteo Pasini, Hendrik B. van Ommen, Zarije Ademi, Mariagrazia Iuliano, Nina Codreanu, Julia M. Brevoord, Tim Turan, Tim H. Taminiau, Ronald Hanson","doi":"10.1103/physrevx.15.021011","DOIUrl":null,"url":null,"abstract":"Solid-state quantum registers consisting of optically active electron spins with nearby nuclear spins are promising building blocks for future quantum technologies. For electron spin-1 registers, dynamical decoupling (DD) quantum gates have been developed that enable the precise control of multiple nuclear spin qubits. However, for the important class of electron spin-1</a:mn>/</a:mo>2</a:mn></a:mrow></a:math> systems, this control method suffers from intrinsic selectivity limitations, resulting in reduced nuclear spin gate fidelities. Here, we demonstrate improved control of single nuclear spins by an electron spin-<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mn>1</c:mn><c:mo>/</c:mo><c:mn>2</c:mn></c:mrow></c:math> using dynamically decoupled radio-frequency (DDRF) gates. We make use of the electron spin-<e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mrow><e:mn>1</e:mn><e:mo>/</e:mo><e:mn>2</e:mn></e:mrow></e:math> of a diamond tin-vacancy center, showing high-fidelity single-qubit gates, single-shot readout, and spin coherence beyond a millisecond. The DD control is used as a benchmark to observe and control a single <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mmultiscripts><g:mrow><g:mn>3</g:mn></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>1</g:mn></g:mrow></g:mmultiscripts><g:mi mathvariant=\"normal\">C</g:mi></g:mrow></g:math> nuclear spin. Using the DDRF control method, we demonstrate improved control on that spin. In addition, we find and control an additional nuclear spin that is insensitive to the DD control method. Using these DDRF gates, we show entanglement between the electron and the nuclear spin with 72(3)% state fidelity. Our extensive simulations indicate that DDRF gate fidelities well in excess are feasible. Finally, we employ time-resolved photon detection during readout to quantify the hyperfine coupling for the electron’s optically excited state. Our work provides key insights into the challenges and opportunities for nuclear spin control in electron spin-<j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><j:mrow><j:mn>1</j:mn><j:mo>/</j:mo><j:mn>2</j:mn></j:mrow></j:math> systems, opening the door to multiqubit experiments on these promising qubit platforms. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"183 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021011","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state quantum registers consisting of optically active electron spins with nearby nuclear spins are promising building blocks for future quantum technologies. For electron spin-1 registers, dynamical decoupling (DD) quantum gates have been developed that enable the precise control of multiple nuclear spin qubits. However, for the important class of electron spin-1/2 systems, this control method suffers from intrinsic selectivity limitations, resulting in reduced nuclear spin gate fidelities. Here, we demonstrate improved control of single nuclear spins by an electron spin-1/2 using dynamically decoupled radio-frequency (DDRF) gates. We make use of the electron spin-1/2 of a diamond tin-vacancy center, showing high-fidelity single-qubit gates, single-shot readout, and spin coherence beyond a millisecond. The DD control is used as a benchmark to observe and control a single 31C nuclear spin. Using the DDRF control method, we demonstrate improved control on that spin. In addition, we find and control an additional nuclear spin that is insensitive to the DD control method. Using these DDRF gates, we show entanglement between the electron and the nuclear spin with 72(3)% state fidelity. Our extensive simulations indicate that DDRF gate fidelities well in excess are feasible. Finally, we employ time-resolved photon detection during readout to quantify the hyperfine coupling for the electron’s optically excited state. Our work provides key insights into the challenges and opportunities for nuclear spin control in electron spin-1/2 systems, opening the door to multiqubit experiments on these promising qubit platforms. Published by the American Physical Society 2025
利用电子自旋- 1/2控制固态核自旋量子位
由光学活性电子自旋和附近核自旋组成的固态量子寄存器是未来量子技术的重要组成部分。对于电子自旋-1寄存器,动态解耦(DD)量子门已经被开发出来,能够精确控制多个核自旋量子比特。然而,对于一类重要的电子自旋为1/2的系统,这种控制方法存在固有的选择性限制,导致核自旋门保真度降低。在这里,我们展示了利用动态解耦射频(DDRF)门,通过电子自旋1/2改进了对单核自旋的控制。我们利用金刚石锡空位中心的电子自旋1/2,显示了高保真的单量子比特门,单次读出,以及超过毫秒的自旋相干性。DD控制被用作观察和控制单个31C核自旋的基准。使用DDRF控制方法,我们演示了对自旋的改进控制。此外,我们发现并控制了一个对DD控制方法不敏感的附加核自旋。利用这些DDRF门,我们以72(3)%的状态保真度显示了电子和核自旋之间的纠缠。大量的仿真结果表明,DDRF门的保真度是可行的。最后,我们在读出过程中使用时间分辨光子探测来量化电子光学激发态的超精细耦合。我们的工作为电子自旋-1/2系统中核自旋控制的挑战和机遇提供了关键见解,为在这些有前途的量子比特平台上进行多量子比特实验打开了大门。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信