{"title":"Digital Discovery of Interferometric Gravitational Wave Detectors","authors":"Mario Krenn, Yehonathan Drori, Rana X Adhikari","doi":"10.1103/physrevx.15.021012","DOIUrl":null,"url":null,"abstract":"Gravitational waves, detected a century after they were first theorized, are space-time distortions caused by some of the most cataclysmic events in the Universe, including black hole mergers and supernovae. The successful detection of these waves has been made possible by ingenious detectors designed by human experts. Beyond these successful designs, the vast space of experimental configurations remains largely unexplored, offering an exciting territory potentially rich in innovative and unconventional detection strategies. Here, we demonstrate an intelligent computational strategy to explore this enormous space, discovering unorthodox topologies for gravitational wave detectors that significantly outperform the currently best-known designs under realistic experimental constraints. This increases the potentially observable volume of the Universe by up to 50-fold. Moreover, by analyzing the best solutions from our superhuman algorithm, we uncover entirely new physics ideas at their core. At a bigger picture, our methodology can readily be extended to AI-driven design of experiments across wide domains of fundamental physics, opening fascinating new windows into the Universe. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":"26 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.15.021012","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gravitational waves, detected a century after they were first theorized, are space-time distortions caused by some of the most cataclysmic events in the Universe, including black hole mergers and supernovae. The successful detection of these waves has been made possible by ingenious detectors designed by human experts. Beyond these successful designs, the vast space of experimental configurations remains largely unexplored, offering an exciting territory potentially rich in innovative and unconventional detection strategies. Here, we demonstrate an intelligent computational strategy to explore this enormous space, discovering unorthodox topologies for gravitational wave detectors that significantly outperform the currently best-known designs under realistic experimental constraints. This increases the potentially observable volume of the Universe by up to 50-fold. Moreover, by analyzing the best solutions from our superhuman algorithm, we uncover entirely new physics ideas at their core. At a bigger picture, our methodology can readily be extended to AI-driven design of experiments across wide domains of fundamental physics, opening fascinating new windows into the Universe. Published by the American Physical Society2025
期刊介绍:
Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.