Yuan Jin, Antonio Pepe, Jianning Li, Christina Gsaxner, Yuxuan Chen, Behrus Puladi, Fen-hua Zhao, Kelsey Pomykala, Jens Kleesiek, Alejandro Frangi, Jan Egger
{"title":"Aortic Vessel Tree Segmentation for Cardiovascular Diseases Treatment: Status Quo","authors":"Yuan Jin, Antonio Pepe, Jianning Li, Christina Gsaxner, Yuxuan Chen, Behrus Puladi, Fen-hua Zhao, Kelsey Pomykala, Jens Kleesiek, Alejandro Frangi, Jan Egger","doi":"10.1145/3728632","DOIUrl":null,"url":null,"abstract":"The aortic vessel tree, composed of the aorta and its branches, is crucial for blood supply to the body. Aortic diseases, such as aneurysms and dissections, can lead to life-threatening ruptures, often requiring open surgery. Therefore, patients commonly undergo treatment under constant monitoring, which requires regular inspections of the vessels through medical imaging techniques. Overlapping and comparing aortic vessel tree geometries from consecutive images allows for tracking changes in both the aorta and its branches. Manual reconstruction of the vessel tree is time-consuming and impractical in clinical settings. In contrast, automatic or semi-automatic segmentation algorithms can perform this task much faster, making them suitable for routine clinical use. This paper systematically reviews methods for the automatic and semi-automatic segmentation of the aortic vessel tree, concluding with a discussion on their clinical applicability, the current research landscape, and ongoing challenges.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"50 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3728632","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The aortic vessel tree, composed of the aorta and its branches, is crucial for blood supply to the body. Aortic diseases, such as aneurysms and dissections, can lead to life-threatening ruptures, often requiring open surgery. Therefore, patients commonly undergo treatment under constant monitoring, which requires regular inspections of the vessels through medical imaging techniques. Overlapping and comparing aortic vessel tree geometries from consecutive images allows for tracking changes in both the aorta and its branches. Manual reconstruction of the vessel tree is time-consuming and impractical in clinical settings. In contrast, automatic or semi-automatic segmentation algorithms can perform this task much faster, making them suitable for routine clinical use. This paper systematically reviews methods for the automatic and semi-automatic segmentation of the aortic vessel tree, concluding with a discussion on their clinical applicability, the current research landscape, and ongoing challenges.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.