Vision transformer based interpretable metabolic syndrome classification using retinal Images

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES
Tae Kwan Lee, So Yeon Kim, Hyuk Jin Choi, Eun Kyung Choe, Kyung-Ah Sohn
{"title":"Vision transformer based interpretable metabolic syndrome classification using retinal Images","authors":"Tae Kwan Lee, So Yeon Kim, Hyuk Jin Choi, Eun Kyung Choe, Kyung-Ah Sohn","doi":"10.1038/s41746-025-01588-0","DOIUrl":null,"url":null,"abstract":"<p>Metabolic syndrome is leading to an increased risk of diabetes and cardiovascular disease. Our study developed a model using retinal image data from fundus photographs taken during comprehensive health check-ups to classify metabolic syndrome. The model achieved an AUC of 0.7752 (95% CI: 0.7719–0.7786) using retinal images, and an AUC of 0.8725 (95% CI: 0.8669–0.8781) when combining retinal images with basic clinical features. Furthermore, we propose a method to improve the interpretability of the relationship between retinal image features and metabolic syndrome by visualizing metabolic syndrome-related areas in retinal images. The results highlight the potential of retinal images in classifying metabolic syndrome.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"37 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01588-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic syndrome is leading to an increased risk of diabetes and cardiovascular disease. Our study developed a model using retinal image data from fundus photographs taken during comprehensive health check-ups to classify metabolic syndrome. The model achieved an AUC of 0.7752 (95% CI: 0.7719–0.7786) using retinal images, and an AUC of 0.8725 (95% CI: 0.8669–0.8781) when combining retinal images with basic clinical features. Furthermore, we propose a method to improve the interpretability of the relationship between retinal image features and metabolic syndrome by visualizing metabolic syndrome-related areas in retinal images. The results highlight the potential of retinal images in classifying metabolic syndrome.

Abstract Image

基于视网膜图像的视觉变形可解释代谢综合征分类
代谢综合征会增加患糖尿病和心血管疾病的风险。我们的研究开发了一个模型,利用在全面健康检查期间拍摄的眼底照片中的视网膜图像数据来分类代谢综合征。使用视网膜图像时,模型的AUC为0.7752 (95% CI: 0.7719-0.7786),将视网膜图像与基本临床特征相结合时,模型的AUC为0.8725 (95% CI: 0.8669-0.8781)。此外,我们提出了一种通过可视化视网膜图像中代谢综合征相关区域来提高视网膜图像特征与代谢综合征之间关系的可解释性的方法。结果突出了视网膜图像在代谢综合征分类中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信