Integrating the Space of Reflectance Spectra

Graham D. Finlayson;Javier Vazquez-Corral;Fufu Fang
{"title":"Integrating the Space of Reflectance Spectra","authors":"Graham D. Finlayson;Javier Vazquez-Corral;Fufu Fang","doi":"10.1109/TIP.2025.3558443","DOIUrl":null,"url":null,"abstract":"Color imaging algorithms - such as color correction, spectral estimation and color constancy - are developed and validated with spectral reflectance data. However, the choice of the reflectance data set - used in development and tuning - not only affects the results of these algorithms but it also changes the ranking of the different approaches. We propose that this fragility is because it is difficult to measure/sample enough data to statistically represent the large number of degrees of freedom apparent in spectral reflectances. In this paper, we propose that the space of reflectance data should not be sampled but, rather, integrated. Specifically, we advocate that the convex closure of a reflectance data set - all convex combinations of all spectra - should be used instead of discrete reflectance samples. To make the integration computation tractable, we approximate these convex closures by their enclosing hyper-cube in a privileged coordinate system. We use color correction as an exemplar color imaging problem to demonstrate the utility of our approach.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"2588-2601"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10964071","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10964071/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Color imaging algorithms - such as color correction, spectral estimation and color constancy - are developed and validated with spectral reflectance data. However, the choice of the reflectance data set - used in development and tuning - not only affects the results of these algorithms but it also changes the ranking of the different approaches. We propose that this fragility is because it is difficult to measure/sample enough data to statistically represent the large number of degrees of freedom apparent in spectral reflectances. In this paper, we propose that the space of reflectance data should not be sampled but, rather, integrated. Specifically, we advocate that the convex closure of a reflectance data set - all convex combinations of all spectra - should be used instead of discrete reflectance samples. To make the integration computation tractable, we approximate these convex closures by their enclosing hyper-cube in a privileged coordinate system. We use color correction as an exemplar color imaging problem to demonstrate the utility of our approach.
对反射光谱空间进行积分
彩色成像算法-如色彩校正,光谱估计和色彩常数-被开发和验证光谱反射率数据。然而,在开发和调优中使用的反射率数据集的选择不仅会影响这些算法的结果,还会改变不同方法的排名。我们认为这种脆弱性是因为很难测量/采样足够的数据来统计地表示光谱反射率中明显的大量自由度。在本文中,我们建议不应该对反射数据的空间进行采样,而是进行集成。具体来说,我们主张反射率数据集的凸闭合-所有光谱的所有凸组合-应该使用而不是离散的反射率样本。为了使积分计算易于处理,我们在一个特权坐标系中用它们的封闭超立方体来近似这些凸闭包。我们使用颜色校正作为一个示例彩色成像问题来演示我们的方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信