Autonomous Navigation and Collision Avoidance for AGV in Dynamic Environments: An Enhanced Deep Reinforcement Learning Approach With Composite Rewards and Dynamic Update Mechanisms

IF 1.5 Q3 AUTOMATION & CONTROL SYSTEMS
Zijianglong Huang, Zhigang Ren, Tehuan Chen, Shengze Cai, Chao Xu
{"title":"Autonomous Navigation and Collision Avoidance for AGV in Dynamic Environments: An Enhanced Deep Reinforcement Learning Approach With Composite Rewards and Dynamic Update Mechanisms","authors":"Zijianglong Huang,&nbsp;Zhigang Ren,&nbsp;Tehuan Chen,&nbsp;Shengze Cai,&nbsp;Chao Xu","doi":"10.1049/csy2.70012","DOIUrl":null,"url":null,"abstract":"<p>With the booming development of logistics, manufacturing and warehousing fields, the autonomous navigation and intelligent obstacle avoidance technology of automated guided vehicles (AGVs) has become the focus of scientific research. In this paper, an enhanced deep reinforcement learning (DRL) framework is proposed, aiming to empower AGVs with the ability of autonomous navigation and obstacle avoidance in the unknown and variable complex environment. To address the problems of time-consuming training and limited generalisation ability of traditional DRL, we refine the twin delayed deep deterministic policy gradient algorithm by integrating adaptive noise attenuation and dynamic delayed updating, optimising both training efficiency and model robustness. In order to further strengthen the AGV's ability to perceive and respond to changes of a dynamic environment, we introduce a distance-based obstacle penalty term in the designed composite reward function, which ensures that the AGV is capable of predicting and avoiding obstacles effectively in dynamic scenarios. Experiments indicate that the AGV model trained by this algorithm presents excellent autonomous navigation capability in both static and dynamic environments, with a high task completion rate, stable and reliable operation, which fully proves the high efficiency and robustness of this method and its practical value.</p>","PeriodicalId":34110,"journal":{"name":"IET Cybersystems and Robotics","volume":"7 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/csy2.70012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Cybersystems and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/csy2.70012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the booming development of logistics, manufacturing and warehousing fields, the autonomous navigation and intelligent obstacle avoidance technology of automated guided vehicles (AGVs) has become the focus of scientific research. In this paper, an enhanced deep reinforcement learning (DRL) framework is proposed, aiming to empower AGVs with the ability of autonomous navigation and obstacle avoidance in the unknown and variable complex environment. To address the problems of time-consuming training and limited generalisation ability of traditional DRL, we refine the twin delayed deep deterministic policy gradient algorithm by integrating adaptive noise attenuation and dynamic delayed updating, optimising both training efficiency and model robustness. In order to further strengthen the AGV's ability to perceive and respond to changes of a dynamic environment, we introduce a distance-based obstacle penalty term in the designed composite reward function, which ensures that the AGV is capable of predicting and avoiding obstacles effectively in dynamic scenarios. Experiments indicate that the AGV model trained by this algorithm presents excellent autonomous navigation capability in both static and dynamic environments, with a high task completion rate, stable and reliable operation, which fully proves the high efficiency and robustness of this method and its practical value.

Abstract Image

动态环境下AGV自主导航与避碰:基于复合奖励和动态更新机制的增强深度强化学习方法
随着物流、制造和仓储领域的蓬勃发展,自动导引车(agv)的自主导航和智能避障技术已成为科学研究的重点。本文提出了一种增强的深度强化学习(DRL)框架,旨在增强agv在未知和可变复杂环境中的自主导航和避障能力。针对传统DRL算法训练耗时和泛化能力有限的问题,结合自适应噪声衰减和动态延迟更新对双延迟深度确定性策略梯度算法进行了改进,优化了训练效率和模型鲁棒性。为了进一步增强AGV对动态环境变化的感知和响应能力,我们在设计的复合奖励函数中引入了基于距离的障碍惩罚项,保证了AGV在动态场景下能够有效地预测和避开障碍物。实验表明,该算法训练的AGV模型在静态和动态环境下都具有良好的自主导航能力,任务完成率高,运行稳定可靠,充分证明了该方法的高效性和鲁棒性及其实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Cybersystems and Robotics
IET Cybersystems and Robotics Computer Science-Information Systems
CiteScore
3.70
自引率
0.00%
发文量
31
审稿时长
34 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信