{"title":"Bridge Girder-End Displacement Reconstruction Using a Novel Hybrid Attention Mechanism Leveraging Multisource Information","authors":"Guang Qu, Mingming Song, Ye Xia, Limin Sun","doi":"10.1155/stc/8249455","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In the realm of structural health monitoring (SHM) of bridge structures, the accurate reconstruction of girder-end displacement (GED) is crucial for identifying potential structural damage and ensuring the monitoring system’s reliability. A novel fine-grained spatial (FGS) attention mechanism, combined with efficient channel attention (ECA), has been proposed to effectively utilize multisource monitoring data. This hybrid attention mechanism has been integrated into an arithmetic optimization algorithm–bidirectional long short-term memory (AOA–BiLSTM) framework for reconstructing GED using non-GED data, including deflection, temperature, strain, and traffic data. Data are organized into a two-dimensional array based on sensor types and spatial locations to capture interchannel and intrachannel correlations. ECA captures local correlations among different sensor types, while the proposed FGS enhances model interpretability by focusing on local dependencies within each sensor type. Huber loss is employed for robust performance, and AOA techniques are used for efficient hyperparameter optimization. Validation with real-world data from a cable-stayed bridge demonstrates the necessity and efficacy of considering multidimensional information correlations in response reconstruction for SHM applications. This work lays a theoretical foundation for improving safety assessments, anomaly detection, data recovery, and virtual sensing in bridge structures.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8249455","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/8249455","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of structural health monitoring (SHM) of bridge structures, the accurate reconstruction of girder-end displacement (GED) is crucial for identifying potential structural damage and ensuring the monitoring system’s reliability. A novel fine-grained spatial (FGS) attention mechanism, combined with efficient channel attention (ECA), has been proposed to effectively utilize multisource monitoring data. This hybrid attention mechanism has been integrated into an arithmetic optimization algorithm–bidirectional long short-term memory (AOA–BiLSTM) framework for reconstructing GED using non-GED data, including deflection, temperature, strain, and traffic data. Data are organized into a two-dimensional array based on sensor types and spatial locations to capture interchannel and intrachannel correlations. ECA captures local correlations among different sensor types, while the proposed FGS enhances model interpretability by focusing on local dependencies within each sensor type. Huber loss is employed for robust performance, and AOA techniques are used for efficient hyperparameter optimization. Validation with real-world data from a cable-stayed bridge demonstrates the necessity and efficacy of considering multidimensional information correlations in response reconstruction for SHM applications. This work lays a theoretical foundation for improving safety assessments, anomaly detection, data recovery, and virtual sensing in bridge structures.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.