Neuroadaptive Impulsive Control of a Class of Uncertain Nonlinear Systems

IF 3.2 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Ming Lin, Zhen-Fa Luo, Jie Tao, Jun-Yi Li, Yong-Hua Liu
{"title":"Neuroadaptive Impulsive Control of a Class of Uncertain Nonlinear Systems","authors":"Ming Lin,&nbsp;Zhen-Fa Luo,&nbsp;Jie Tao,&nbsp;Jun-Yi Li,&nbsp;Yong-Hua Liu","doi":"10.1002/rnc.7834","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper addresses the tracking control problem for a class of uncertain nonlinear systems, offering a neuroadaptive impulsive control solution with fast weight convergence. The proposed control architecture uniquely employs radial basis function neural networks (RBFNNs) to approximate unknown system dynamics, where the neural network (NN) weight estimator is updated at each impulsive instant. Unlike existing neuroadaptive controllers, this method quickly identifies unknown dynamics without inducing high-frequency oscillations due to the impulse update of the NN weight estimator, thereby improving the transient performance of the closed-loop system. Leveraging the Lyapunov stability theory for impulsive dynamical systems, this paper rigorously establishes the semi-global uniform ultimate boundedness (SGUUB) of all closed-loop system signals. Finally, validation through simulation studies substantiates the efficacy of the proposed neuroadaptive impulsive controller.</p>\n </div>","PeriodicalId":50291,"journal":{"name":"International Journal of Robust and Nonlinear Control","volume":"35 8","pages":"3192-3207"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robust and Nonlinear Control","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rnc.7834","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the tracking control problem for a class of uncertain nonlinear systems, offering a neuroadaptive impulsive control solution with fast weight convergence. The proposed control architecture uniquely employs radial basis function neural networks (RBFNNs) to approximate unknown system dynamics, where the neural network (NN) weight estimator is updated at each impulsive instant. Unlike existing neuroadaptive controllers, this method quickly identifies unknown dynamics without inducing high-frequency oscillations due to the impulse update of the NN weight estimator, thereby improving the transient performance of the closed-loop system. Leveraging the Lyapunov stability theory for impulsive dynamical systems, this paper rigorously establishes the semi-global uniform ultimate boundedness (SGUUB) of all closed-loop system signals. Finally, validation through simulation studies substantiates the efficacy of the proposed neuroadaptive impulsive controller.

一类不确定非线性系统的神经自适应脉冲控制
针对一类不确定非线性系统的跟踪控制问题,提出了一种快速权值收敛的神经自适应脉冲控制方法。该控制结构独特地采用径向基函数神经网络(RBFNNs)来近似未知系统动力学,其中神经网络(NN)权估计器在每个脉冲瞬间更新。与现有的神经自适应控制器不同,该方法快速识别未知动态,而不会由于神经网络权值估计器的脉冲更新而引起高频振荡,从而提高了闭环系统的瞬态性能。利用脉冲动力系统的Lyapunov稳定性理论,严格地建立了所有闭环系统信号的半全局一致极限有界性。最后,通过仿真研究验证了所提出的神经自适应脉冲控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Robust and Nonlinear Control
International Journal of Robust and Nonlinear Control 工程技术-工程:电子与电气
CiteScore
6.70
自引率
20.50%
发文量
505
审稿时长
2.7 months
期刊介绍: Papers that do not include an element of robust or nonlinear control and estimation theory will not be considered by the journal, and all papers will be expected to include significant novel content. The focus of the journal is on model based control design approaches rather than heuristic or rule based methods. Papers on neural networks will have to be of exceptional novelty to be considered for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信