Variational Weighted ℓ p − ℓ q $\ell _p-\ell _q$ Regularization for Hyperspectral Image Restoration Under Mixed Noise

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hazique Aetesam, V. B. Surya Prasath
{"title":"Variational Weighted \n \n \n \n ℓ\n p\n \n −\n \n ℓ\n q\n \n \n $\\ell _p-\\ell _q$\n Regularization for Hyperspectral Image Restoration Under Mixed Noise","authors":"Hazique Aetesam,&nbsp;V. B. Surya Prasath","doi":"10.1049/ipr2.70073","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose to use weighted <span></span><math>\n <semantics>\n <msub>\n <mi>ℓ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\ell _2$</annotation>\n </semantics></math>-norm for approximating the solution of general <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ℓ</mi>\n <mi>p</mi>\n </msub>\n <mo>−</mo>\n <msub>\n <mi>ℓ</mi>\n <mi>q</mi>\n </msub>\n </mrow>\n <annotation>$\\ell _p-\\ell _q$</annotation>\n </semantics></math>-norm regularization problem for recovering hyperspectral images (HSI) corrupted by a mixture of Gaussian-impulse noise. As a special case of <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>∈</mo>\n <mo>{</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$p,q\\in \\lbrace 1,2\\rbrace$</annotation>\n </semantics></math>, we design an optimization framework to accommodate the combined effect of different noise sources. An initial impulse noise pre-detection phase decouples the raw noisy HSI data into impulse and Gaussian corrupted pixels. Gaussian corrupted pixels are handled by data-fidelity term in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ℓ</mi>\n <mn>2</mn>\n </msub>\n <mo>−</mo>\n <mi>norm</mi>\n </mrow>\n <annotation>$\\ell _2-{\\rm norm}$</annotation>\n </semantics></math> while impulse corrupted pixels possess more Laplacian like behavior; modeled using <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ℓ</mi>\n <mn>1</mn>\n </msub>\n <mo>−</mo>\n <mi>norm</mi>\n </mrow>\n <annotation>$\\ell _1-{\\rm norm}$</annotation>\n </semantics></math>. Solutions of problems involving <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ℓ</mi>\n <mn>1</mn>\n </msub>\n <mo>−</mo>\n <mi>norm</mi>\n </mrow>\n <annotation>$\\ell _1-{\\rm norm}$</annotation>\n </semantics></math> in data fidelity and regularization terms complicate the optimization process but are less sensitive to the outlier pixels. On the other hand, the least square solutions for the data misfit are computationally efficient but generates solutions which are quite sensitive to the outlier pixels; which is the characteristic of impulse corrupted pixels. Therefore, in this paper, we decouple the set of pixels into two distinct parts; handled using two separate data fidelity terms. Total variation (TV) is used on the Casorati matrix representation of the input data to exploit similarity along both spatial and spectral dimensions. The resulting optimization problem is reformulated as iteratively reweighted least square for the general <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>ℓ</mi>\n <mi>p</mi>\n </msub>\n <mo>−</mo>\n <msub>\n <mi>ℓ</mi>\n <mi>q</mi>\n </msub>\n </mrow>\n <annotation>$\\ell _p-\\ell _q$</annotation>\n </semantics></math>-norm problem for <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>=</mo>\n <mo>{</mo>\n <mn>1</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>}</mo>\n </mrow>\n <annotation>$p=\\lbrace 1,2\\rbrace$</annotation>\n </semantics></math> for data fidelity terms and <span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$q=1$</annotation>\n </semantics></math> for the TV regularization term. Experiments conducted over synthetically corrupted HSI data and images obtained from real HSI sensors confirm the suitability of the proposed weighted norm optimization framework (WNOF) over a wide range of degradation scenarios.</p>","PeriodicalId":56303,"journal":{"name":"IET Image Processing","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ipr2.70073","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Image Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ipr2.70073","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose to use weighted 2 $\ell _2$ -norm for approximating the solution of general p q $\ell _p-\ell _q$ -norm regularization problem for recovering hyperspectral images (HSI) corrupted by a mixture of Gaussian-impulse noise. As a special case of p , q { 1 , 2 } $p,q\in \lbrace 1,2\rbrace$ , we design an optimization framework to accommodate the combined effect of different noise sources. An initial impulse noise pre-detection phase decouples the raw noisy HSI data into impulse and Gaussian corrupted pixels. Gaussian corrupted pixels are handled by data-fidelity term in 2 norm $\ell _2-{\rm norm}$ while impulse corrupted pixels possess more Laplacian like behavior; modeled using 1 norm $\ell _1-{\rm norm}$ . Solutions of problems involving 1 norm $\ell _1-{\rm norm}$ in data fidelity and regularization terms complicate the optimization process but are less sensitive to the outlier pixels. On the other hand, the least square solutions for the data misfit are computationally efficient but generates solutions which are quite sensitive to the outlier pixels; which is the characteristic of impulse corrupted pixels. Therefore, in this paper, we decouple the set of pixels into two distinct parts; handled using two separate data fidelity terms. Total variation (TV) is used on the Casorati matrix representation of the input data to exploit similarity along both spatial and spectral dimensions. The resulting optimization problem is reformulated as iteratively reweighted least square for the general p q $\ell _p-\ell _q$ -norm problem for p = { 1 , 2 } $p=\lbrace 1,2\rbrace$ for data fidelity terms and q = 1 $q=1$ for the TV regularization term. Experiments conducted over synthetically corrupted HSI data and images obtained from real HSI sensors confirm the suitability of the proposed weighted norm optimization framework (WNOF) over a wide range of degradation scenarios.

Abstract Image

混合噪声下高光谱图像恢复的变分加权∑p−∑q$ \ell _p-\ell _q$正则化
本文提出使用加权 ℓ 2 $\ell _2$ 规范来近似求解一般 ℓ p - ℓ q $\ell _p-\ell _q$ 规范正则化问题,用于恢复被高斯脉冲噪声混合物破坏的高光谱图像(HSI)。作为 p , q∈ { 1 , 2 } 的特例 我们设计了一个优化框架,以适应不同噪声源的综合影响。初始脉冲噪声预检测阶段将原始噪声 HSI 数据分离为脉冲和高斯干扰像素。高斯损坏的像素由 ℓ 2 - norm $\ell _2-{rm norm}$ 中的数据保真项处理,而脉冲损坏的像素具有更多类似拉普拉斯的行为;使用 ℓ 1 - norm $\ell _1-{rm norm}$ 建模。数据保真度和正则化项中涉及 ℓ 1 - norm $\ell _1-{rm norm}$ 问题的解决方案会使优化过程复杂化,但对离群像素的敏感度较低。另一方面,数据错配的最小平方解计算效率高,但生成的解对离群像素相当敏感;这正是脉冲损坏像素的特点。因此,在本文中,我们将像素集合解耦为两个不同的部分,使用两个独立的数据保真度项来处理。在输入数据的 Casorati 矩阵表示中使用了总变异 (TV),以利用空间和光谱维度的相似性。对于 p = { 1 , 2 } 的一般 ℓ p - ℓ q $\ell _p-\ell _q$ -norm 问题,由此产生的优化问题被重新表述为迭代加权最小二乘法。 $p=\lbrace 1,2\rbrace$ 为数据保真项,q = 1 $q=1$ 为电视正则项。在合成损坏的 HSI 数据和从真实 HSI 传感器获得的图像上进行的实验证实,所提出的加权规范优化框架 (WNOF) 适用于各种退化情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Image Processing
IET Image Processing 工程技术-工程:电子与电气
CiteScore
5.40
自引率
8.70%
发文量
282
审稿时长
6 months
期刊介绍: The IET Image Processing journal encompasses research areas related to the generation, processing and communication of visual information. The focus of the journal is the coverage of the latest research results in image and video processing, including image generation and display, enhancement and restoration, segmentation, colour and texture analysis, coding and communication, implementations and architectures as well as innovative applications. Principal topics include: Generation and Display - Imaging sensors and acquisition systems, illumination, sampling and scanning, quantization, colour reproduction, image rendering, display and printing systems, evaluation of image quality. Processing and Analysis - Image enhancement, restoration, segmentation, registration, multispectral, colour and texture processing, multiresolution processing and wavelets, morphological operations, stereoscopic and 3-D processing, motion detection and estimation, video and image sequence processing. Implementations and Architectures - Image and video processing hardware and software, design and construction, architectures and software, neural, adaptive, and fuzzy processing. Coding and Transmission - Image and video compression and coding, compression standards, noise modelling, visual information networks, streamed video. Retrieval and Multimedia - Storage of images and video, database design, image retrieval, video annotation and editing, mixed media incorporating visual information, multimedia systems and applications, image and video watermarking, steganography. Applications - Innovative application of image and video processing technologies to any field, including life sciences, earth sciences, astronomy, document processing and security. Current Special Issue Call for Papers: Evolutionary Computation for Image Processing - https://digital-library.theiet.org/files/IET_IPR_CFP_EC.pdf AI-Powered 3D Vision - https://digital-library.theiet.org/files/IET_IPR_CFP_AIPV.pdf Multidisciplinary advancement of Imaging Technologies: From Medical Diagnostics and Genomics to Cognitive Machine Vision, and Artificial Intelligence - https://digital-library.theiet.org/files/IET_IPR_CFP_IST.pdf Deep Learning for 3D Reconstruction - https://digital-library.theiet.org/files/IET_IPR_CFP_DLR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信