Lina M. Zapata-Restrepo, Katherine Bawden, Giovanna Sidaoui-Haddad, Eleanor Spencer, Ian D. Williams, Malcolm Hudson
{"title":"Microplastics in the European native oyster, Ostrea edulis, to monitoring pollution-related patterns in the Solent region (United Kingdom)","authors":"Lina M. Zapata-Restrepo, Katherine Bawden, Giovanna Sidaoui-Haddad, Eleanor Spencer, Ian D. Williams, Malcolm Hudson","doi":"10.1007/s10661-025-13975-x","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics (MPs) are the most abundant type of debris in the marine environment, creating a significant threat to aquatic ecosystems due to their persistence, ability to absorb organic pollutants and potential ingestion by marine fauna. Shellfish are particularly vulnerable to MPs accumulation as they filter large volumes of seawater, and they become an important route for human exposure to these particles. This study, the first to examine MPs in European flat oyster (<i>Ostrea edulis</i>) populations, aimed to quantify these particles in the gill and digestive tissues of oysters from the Solent region (southern England). Enzymatic digestion using Proteinase-K was used in this study and MPs were identified in every oyster sampled to determine whether differences in abundance, type and size of MPs exist between locations. Oysters near urban areas contained significantly more MPs than those near rural areas. Fibres were the most prevalent type of MPs, with sizes varying across locations. The study found no significant differences in MPs presence between gills and digestive tissues, and an inverse correlation between the size of MPs and oyster size. The presence of MPs in wild <i>O</i>. <i>edulis</i> could be an additional threat to the survival of an already threatened species and may pose health risks for predatory species and human consumers of seafood. The use of <i>O</i>. <i>edulis</i> as a biomonitoring species for marine MPs pollution could help determine the extent, distribution and sources of MPs, potentially informing management strategies to reduce pollution.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10661-025-13975-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13975-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microplastics (MPs) are the most abundant type of debris in the marine environment, creating a significant threat to aquatic ecosystems due to their persistence, ability to absorb organic pollutants and potential ingestion by marine fauna. Shellfish are particularly vulnerable to MPs accumulation as they filter large volumes of seawater, and they become an important route for human exposure to these particles. This study, the first to examine MPs in European flat oyster (Ostrea edulis) populations, aimed to quantify these particles in the gill and digestive tissues of oysters from the Solent region (southern England). Enzymatic digestion using Proteinase-K was used in this study and MPs were identified in every oyster sampled to determine whether differences in abundance, type and size of MPs exist between locations. Oysters near urban areas contained significantly more MPs than those near rural areas. Fibres were the most prevalent type of MPs, with sizes varying across locations. The study found no significant differences in MPs presence between gills and digestive tissues, and an inverse correlation between the size of MPs and oyster size. The presence of MPs in wild O. edulis could be an additional threat to the survival of an already threatened species and may pose health risks for predatory species and human consumers of seafood. The use of O. edulis as a biomonitoring species for marine MPs pollution could help determine the extent, distribution and sources of MPs, potentially informing management strategies to reduce pollution.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.