Nuclear level density studies using deep neural network techniques

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2025-04-11 DOI:10.1007/s12043-025-02907-6
K Jyothish, V Parvathi, A K Rhine Kumar
{"title":"Nuclear level density studies using deep neural network techniques","authors":"K Jyothish,&nbsp;V Parvathi,&nbsp;A K Rhine Kumar","doi":"10.1007/s12043-025-02907-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study employs a deep neural network (DNN) model to investigate nuclear level density (NLD) using experimental data obtained using the Oslo method. The work focusses on lanthanide nuclei and period-5 nuclei; the DNN model predictions are compared with experimental results. Also, we compare our results with the HFB<span>\\(+\\)</span>Cmb (Hartree–Fock–Bogoliubov plus combinatorial) model results retrieved from the RIPL3 data. The DNN model demonstrates higher performance, yielding root mean square (RMS) error values of 0.098 <span>\\(\\textrm{MeV}^{-1}\\)</span> for lanthanides and 0.101 <span>\\(\\hbox {MeV}^{-1}\\)</span> for period-5 nuclei across a comprehensive spectrum of excitation energies. The observed nuclear level densities at very low excitation energies display anomalous behaviour that may be attributed to the nuclear pairing and shell corrections. These phenomena become less pronounced at higher excitation energies, leading to a more uniform level density trend. Even–even nuclei experience significant effects from pairing at lower excitation energies, changing the level density pattern. The present study predicts NLD using the DNN model for selected isotopes where experimental data are unavailable.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 2","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-025-02907-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs a deep neural network (DNN) model to investigate nuclear level density (NLD) using experimental data obtained using the Oslo method. The work focusses on lanthanide nuclei and period-5 nuclei; the DNN model predictions are compared with experimental results. Also, we compare our results with the HFB\(+\)Cmb (Hartree–Fock–Bogoliubov plus combinatorial) model results retrieved from the RIPL3 data. The DNN model demonstrates higher performance, yielding root mean square (RMS) error values of 0.098 \(\textrm{MeV}^{-1}\) for lanthanides and 0.101 \(\hbox {MeV}^{-1}\) for period-5 nuclei across a comprehensive spectrum of excitation energies. The observed nuclear level densities at very low excitation energies display anomalous behaviour that may be attributed to the nuclear pairing and shell corrections. These phenomena become less pronounced at higher excitation energies, leading to a more uniform level density trend. Even–even nuclei experience significant effects from pairing at lower excitation energies, changing the level density pattern. The present study predicts NLD using the DNN model for selected isotopes where experimental data are unavailable.

利用深度神经网络技术研究核级密度
本研究采用深度神经网络(DNN)模型,利用奥斯陆方法获得的实验数据来研究核能级密度(NLD)。研究重点是镧系元素核和5周期核;将DNN模型的预测结果与实验结果进行了比较。此外,我们还将我们的结果与从RIPL3数据中检索的HFB \(+\) Cmb (Hartree-Fock-Bogoliubov +组合)模型结果进行了比较。DNN模型表现出更高的性能,在激发能的综合谱上,镧系元素的均方根误差(RMS)为0.098 \(\textrm{MeV}^{-1}\),周期5的原子核的均方根误差为0.101 \(\hbox {MeV}^{-1}\)。在极低激发能下观测到的核能级密度表现出异常行为,这可能归因于核对和壳层修正。这些现象在较高的激发能下变得不那么明显,导致更均匀的能级密度趋势。偶偶核在较低激发能下的配对效应显著,改变了能级密度模式。本研究使用DNN模型对实验数据不可用的选定同位素预测NLD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信