A Hierarchical Networking and Privacy-Preserving Federated Learning Framework for 5G Networks

Chen Guo;Fang Cui;Chao Xu;Mohan Su;Zhihao Wang;Hongjia Li
{"title":"A Hierarchical Networking and Privacy-Preserving Federated Learning Framework for 5G Networks","authors":"Chen Guo;Fang Cui;Chao Xu;Mohan Su;Zhihao Wang;Hongjia Li","doi":"10.23919/JCIN.2025.10964101","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) has been widely envisioned as a key enabler for 5G and beyond networks. To integrate AI into mobile networks, the third generation partnership (3GPP) introduces the network data analytics function (NWDAF) starting from Release 15 to support “in-network” learning and inference, and further supports federated learning (FL) from Release 16 to protect data privacy. However, practical deployment of federated learning in 5G networks still faces challenges of high communication overhead and potential risks of model and data leakage. Motivated by these challenges, we propose a hierarchical networking and privacy-preserving federated learning (HiNP-FL) framework for 5G networks. Specifically, in the HiNP-FL framework, 1) we propose the hierarchical NWDAF based FL mechanism to reduce FL communication overhead in 5G networks; 2) based on multi-party polynomial evaluation (OMPE), we design a FL model and data privacy protection mechanism for the hierarchical FL mechanism; 3) we validate the privacy protection capability of the HiNP-FL framework through privacy analysis, and testify its effectiveness in terms of model accuracy and communication efficiency through extensive experiments.","PeriodicalId":100766,"journal":{"name":"Journal of Communications and Information Networks","volume":"10 1","pages":"26-36"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Communications and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10964101/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) has been widely envisioned as a key enabler for 5G and beyond networks. To integrate AI into mobile networks, the third generation partnership (3GPP) introduces the network data analytics function (NWDAF) starting from Release 15 to support “in-network” learning and inference, and further supports federated learning (FL) from Release 16 to protect data privacy. However, practical deployment of federated learning in 5G networks still faces challenges of high communication overhead and potential risks of model and data leakage. Motivated by these challenges, we propose a hierarchical networking and privacy-preserving federated learning (HiNP-FL) framework for 5G networks. Specifically, in the HiNP-FL framework, 1) we propose the hierarchical NWDAF based FL mechanism to reduce FL communication overhead in 5G networks; 2) based on multi-party polynomial evaluation (OMPE), we design a FL model and data privacy protection mechanism for the hierarchical FL mechanism; 3) we validate the privacy protection capability of the HiNP-FL framework through privacy analysis, and testify its effectiveness in terms of model accuracy and communication efficiency through extensive experiments.
面向5G网络的分层网络和隐私保护联邦学习框架
人工智能(AI)已被广泛视为 5G 及更先进网络的关键推动因素。为了将人工智能融入移动网络,第三代合作伙伴关系(3GPP)从第 15 版开始引入了网络数据分析功能(NWDAF),以支持 "网络内 "学习和推理,并从第 16 版开始进一步支持联合学习(FL),以保护数据隐私。然而,联合学习在 5G 网络中的实际部署仍然面临着通信开销大、模型和数据泄漏的潜在风险等挑战。基于这些挑战,我们提出了一种面向 5G 网络的分层网络和隐私保护联合学习(HiNP-FL)框架。具体来说,在 HiNP-FL 框架中,1)我们提出了基于 NWDAF 的分层 FL 机制,以减少 5G 网络中的 FL 通信开销;2)基于多方多项式评估(OMPE),我们为分层 FL 机制设计了 FL 模型和数据隐私保护机制;3)我们通过隐私分析验证了 HiNP-FL 框架的隐私保护能力,并通过大量实验证明了其在模型准确性和通信效率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信