Measurement of particulates formed during thermal protection system spallation in an arc-jet environment

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL
K.J. Price, A. Martin, S.C.C. Bailey
{"title":"Measurement of particulates formed during thermal protection system spallation in an arc-jet environment","authors":"K.J. Price,&nbsp;A. Martin,&nbsp;S.C.C. Bailey","doi":"10.1016/j.expthermflusci.2025.111487","DOIUrl":null,"url":null,"abstract":"<div><div>An arc-jet campaign conducted in the Aerodynamic Heating Facility at NASA Ames was conducted to investigate the spallation of thermal protection system materials by estimating the size of particles ejected from these materials, as well as the corresponding mass loss. Particle sizes were determined both from analysis of particle tracking velocimetry, utilizing a force balance on the particulates, and by direct measurement of particles captured through targeted design of the test articles. Analysis of the captured particles revealed that they took on different geometries consisting of fine particulates, individual fibers, and clumps of multiple fibers. Different methods were required for each particle sizing approach to determine particle quantities, and corresponding mass loss. However, similar values for mass loss were determined using both techniques. In addition, it was found that the particle size distributions were independent of surface heat flux, and whether the carbon preform contained additional phenolic resin. It was found, however, that the presence of phenolic resin caused a measurable reduction in the rate of particle production, potentially due to its pyrolysis reducing the diffusion of oxygen from the free stream into the sample.</div></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"167 ","pages":"Article 111487"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177725000810","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An arc-jet campaign conducted in the Aerodynamic Heating Facility at NASA Ames was conducted to investigate the spallation of thermal protection system materials by estimating the size of particles ejected from these materials, as well as the corresponding mass loss. Particle sizes were determined both from analysis of particle tracking velocimetry, utilizing a force balance on the particulates, and by direct measurement of particles captured through targeted design of the test articles. Analysis of the captured particles revealed that they took on different geometries consisting of fine particulates, individual fibers, and clumps of multiple fibers. Different methods were required for each particle sizing approach to determine particle quantities, and corresponding mass loss. However, similar values for mass loss were determined using both techniques. In addition, it was found that the particle size distributions were independent of surface heat flux, and whether the carbon preform contained additional phenolic resin. It was found, however, that the presence of phenolic resin caused a measurable reduction in the rate of particle production, potentially due to its pyrolysis reducing the diffusion of oxygen from the free stream into the sample.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信