Learning deep feature representations for multi-modal MR brain tumor segmentation

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tongxue Zhou , Zheng Wang , Xiaohui Liu , Weibo Liu , Shan Zhu
{"title":"Learning deep feature representations for multi-modal MR brain tumor segmentation","authors":"Tongxue Zhou ,&nbsp;Zheng Wang ,&nbsp;Xiaohui Liu ,&nbsp;Weibo Liu ,&nbsp;Shan Zhu","doi":"10.1016/j.neucom.2025.130162","DOIUrl":null,"url":null,"abstract":"<div><div>Brain tumor segmentation is crucial for accurate diagnosis, treatment planning, and patient monitoring. Different MRI sequences can provide unique and complementary information about various aspects of brain tumors. However, effectively integrating diverse data sources to achieve accurate segmentation remains a significant challenge due to the inherent complexity and variability of the data. To address this challenge, this paper proposes a deep learning framework designed to fuse multi-modal MRI data and enhance brain tumor segmentation accuracy. Specifically, the framework introduces two innovative modules: the modality-wise feature fusion module (MFFM) and the spatial and channel-wise feature fusion module (SCFFM). The MFFM aims to learn modality-specific features and integrate information from diverse modalities, thereby ensuring richer and more discriminative feature representations. Meanwhile, the SCFFM is designed to capture contextual information and achieve multi-channel data incorporation by emphasizing informative regions and highlighting critical features. Together, these modules collaboratively enhance the model’s capacity for feature learning, leading to more precise tumor segmentation. Experimental validation on two public datasets demonstrates the effectiveness of the proposed approach, achieving an average Dice similarity coefficient of 83.2% with an average 95% Hausdorff distance of 4.3 mm on the BraTS 2018 dataset, and an average Dice similarity coefficient of 82.9% with an average 95% Hausdorff distance of 5.5 mm on the BraTS 2019 dataset. This framework not only presents an effective method for precise multi-modal brain tumor segmentation but also provides a promising solution for other challenges in multi-modal data fusion.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"638 ","pages":"Article 130162"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225008343","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Brain tumor segmentation is crucial for accurate diagnosis, treatment planning, and patient monitoring. Different MRI sequences can provide unique and complementary information about various aspects of brain tumors. However, effectively integrating diverse data sources to achieve accurate segmentation remains a significant challenge due to the inherent complexity and variability of the data. To address this challenge, this paper proposes a deep learning framework designed to fuse multi-modal MRI data and enhance brain tumor segmentation accuracy. Specifically, the framework introduces two innovative modules: the modality-wise feature fusion module (MFFM) and the spatial and channel-wise feature fusion module (SCFFM). The MFFM aims to learn modality-specific features and integrate information from diverse modalities, thereby ensuring richer and more discriminative feature representations. Meanwhile, the SCFFM is designed to capture contextual information and achieve multi-channel data incorporation by emphasizing informative regions and highlighting critical features. Together, these modules collaboratively enhance the model’s capacity for feature learning, leading to more precise tumor segmentation. Experimental validation on two public datasets demonstrates the effectiveness of the proposed approach, achieving an average Dice similarity coefficient of 83.2% with an average 95% Hausdorff distance of 4.3 mm on the BraTS 2018 dataset, and an average Dice similarity coefficient of 82.9% with an average 95% Hausdorff distance of 5.5 mm on the BraTS 2019 dataset. This framework not only presents an effective method for precise multi-modal brain tumor segmentation but also provides a promising solution for other challenges in multi-modal data fusion.
为多模态磁共振脑肿瘤分割学习深度特征表征
脑肿瘤的分割对准确诊断、治疗计划和患者监测至关重要。不同的MRI序列可以提供脑肿瘤各个方面的独特和互补的信息。然而,由于数据固有的复杂性和可变性,有效地整合不同的数据源以实现准确的分割仍然是一个重大挑战。为了解决这一挑战,本文提出了一个深度学习框架,旨在融合多模态MRI数据,提高脑肿瘤分割的准确性。具体来说,该框架引入了两个创新模块:模态智能特征融合模块(MFFM)和空间和信道智能特征融合模块(SCFFM)。MFFM旨在学习特定于模态的特征,并整合来自不同模态的信息,从而确保更丰富、更具判别性的特征表示。同时,SCFFM旨在通过强调信息区域和突出关键特征来捕获上下文信息并实现多通道数据合并。总之,这些模块协同增强了模型的特征学习能力,从而实现更精确的肿瘤分割。在两个公共数据集上的实验验证证明了该方法的有效性,在BraTS 2018数据集上,平均骰子相似系数为83.2%,平均95%豪斯多夫距离为4.3 mm;在BraTS 2019数据集上,平均骰子相似系数为82.9%,平均95%豪斯多夫距离为5.5 mm。该框架不仅为精确分割多模态脑肿瘤提供了有效的方法,也为多模态数据融合中的其他难题提供了很好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信