Probabilistic Forecasting with VAR-VAE: Advancing Time Series Forecasting under Uncertainty

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS
Radmir Mishelevich Leushuis
{"title":"Probabilistic Forecasting with VAR-VAE: Advancing Time Series Forecasting under Uncertainty","authors":"Radmir Mishelevich Leushuis","doi":"10.1016/j.ins.2025.122184","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce the VAR-VAE, a novel time series model that combines the generative capabilities of Variational Autoencoders (VAEs) with Vector Autoregression (VAR) models in the latent space. The VAR-VAE encodes noisy time series into a first-lag VAR probabilistic latent space. We show that this improves the forecasting performance and reduces overfitting, especially at high noise-to-signal ratios. We also show that, compared to a traditional CNN-LSTM model, the VAR-VAE yields a 3–10% reduction in MSE, while converging in 66% fewer training epochs. Furthermore, we also show how the model's probabilistic forecasts can improve practical decision-making under uncertainty. In simulated securities trading scenarios using model-derived confidence, the VAR-VAE achieves higher Sharpe Ratios and greater directional accuracy compared to using point estimates. These results highlight the model's effectiveness in practical applications, especially in environments with noisy data. Future research may focus on extending VAR-VAE to multi-step forecasting or incorporating more advanced latent structures, such as VARMA models.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"713 ","pages":"Article 122184"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525003160","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the VAR-VAE, a novel time series model that combines the generative capabilities of Variational Autoencoders (VAEs) with Vector Autoregression (VAR) models in the latent space. The VAR-VAE encodes noisy time series into a first-lag VAR probabilistic latent space. We show that this improves the forecasting performance and reduces overfitting, especially at high noise-to-signal ratios. We also show that, compared to a traditional CNN-LSTM model, the VAR-VAE yields a 3–10% reduction in MSE, while converging in 66% fewer training epochs. Furthermore, we also show how the model's probabilistic forecasts can improve practical decision-making under uncertainty. In simulated securities trading scenarios using model-derived confidence, the VAR-VAE achieves higher Sharpe Ratios and greater directional accuracy compared to using point estimates. These results highlight the model's effectiveness in practical applications, especially in environments with noisy data. Future research may focus on extending VAR-VAE to multi-step forecasting or incorporating more advanced latent structures, such as VARMA models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信