{"title":"Sparse representation for ℓp−αℓq minimization and uniform condition for the recovery of approximately k-sparse signals with prior support information","authors":"Kunsheng Zhan, Anhua Wan","doi":"10.1016/j.sigpro.2025.110019","DOIUrl":null,"url":null,"abstract":"<div><div>In the frame of <span><math><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>−</mo><mi>α</mi><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> metric, a novel lemma of sparse representation is developed. Uniform sufficient conditions for the stable recovery of approximately <span><math><mi>k</mi></math></span>-sparse signals with partial support information are derived in different noise settings via weighted <span><math><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>−</mo><mi>α</mi><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> minimization method, and moreover, the reconstruction error bounds are precisely characterized. Specifying different values of the parameters <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mo>,</mo><mspace></mspace><mi>q</mi><mo>∈</mo><mrow><mo>[</mo><mi>p</mi><mo>,</mo><mo>+</mo><mi>∞</mi><mo>]</mo></mrow></mrow></math></span> and <span><math><mrow><mi>α</mi><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow></math></span> in the new results leads to some important special cases, including the optimal results in terms of <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> convex minimization, <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span> nonconvex minimization, <span><math><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> minimization, <span><math><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mi>α</mi><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>q</mi></mrow></msub></mrow></math></span> minimization and <span><math><mrow><msub><mrow><mi>ℓ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>−</mo><mi>α</mi><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> minimization in the literature. A series of numerical experiments demonstrate the advantage of the new method for sparse recovery.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"235 ","pages":"Article 110019"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425001331","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the frame of metric, a novel lemma of sparse representation is developed. Uniform sufficient conditions for the stable recovery of approximately -sparse signals with partial support information are derived in different noise settings via weighted minimization method, and moreover, the reconstruction error bounds are precisely characterized. Specifying different values of the parameters and in the new results leads to some important special cases, including the optimal results in terms of convex minimization, nonconvex minimization, minimization, minimization and minimization in the literature. A series of numerical experiments demonstrate the advantage of the new method for sparse recovery.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.