{"title":"A multi-class driver behavior dataset for real-time detection and road safety enhancement","authors":"Arafat Sahin Afridi, Arafath Kafy, Ms. Nazmun Nessa Moon, Md. Shahriar Shakil","doi":"10.1016/j.dib.2025.111529","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel dataset designed to support the development of AI-driven driver monitoring systems. The dataset captures real-world driver behaviors under diverse driving conditions, including private vehicles and public buses, in Dhaka, Bangladesh. It comprises 7286 high-resolution images categorized into five behavioral classes: Safe Driving, Talking on the Phone, Texting, Turning, and Other Distracting Behaviors. The dataset reflects natural variations in driver behavior, such as different lighting conditions, angles, and vehicle types, making it highly applicable to real-world scenarios. By providing a comprehensive and annotated dataset, we aim to support the development of intelligent transportation systems and contribute to reducing accidents caused by distracted driving. The dataset is publicly available and can be used to train and evaluate machine learning models for real-time driver behavior detection.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"60 ","pages":"Article 111529"},"PeriodicalIF":1.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925002616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel dataset designed to support the development of AI-driven driver monitoring systems. The dataset captures real-world driver behaviors under diverse driving conditions, including private vehicles and public buses, in Dhaka, Bangladesh. It comprises 7286 high-resolution images categorized into five behavioral classes: Safe Driving, Talking on the Phone, Texting, Turning, and Other Distracting Behaviors. The dataset reflects natural variations in driver behavior, such as different lighting conditions, angles, and vehicle types, making it highly applicable to real-world scenarios. By providing a comprehensive and annotated dataset, we aim to support the development of intelligent transportation systems and contribute to reducing accidents caused by distracted driving. The dataset is publicly available and can be used to train and evaluate machine learning models for real-time driver behavior detection.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.