Beyond the Naked Eye: Computer Vision for Detecting Brown Marmorated Stink Bug and Its Punctures

Lennart Almstedt;Francesco Betti Sorbelli;Bas Boom;Rosalba Calvini;Elena Costi;Alexandru Dinca;Veronica Ferrari;Daniele Giannetti;Loretta Ichim;Amin Kargar;Catalin Lazar;Lara Maistrello;Alfredo Navarra;David Niederprüm;Peter Offermans;Brendan O'Flynn;Lorenzo Palazzetti;Niccolò Patelli;Cristina M. Pinotti;Dan Popescu;Aravind K. Rangarajan;Liviu Serghei;Alessandro Ulrici;Lars Wolf;Dimitrios Zorbas;Leonard Zurek
{"title":"Beyond the Naked Eye: Computer Vision for Detecting Brown Marmorated Stink Bug and Its Punctures","authors":"Lennart Almstedt;Francesco Betti Sorbelli;Bas Boom;Rosalba Calvini;Elena Costi;Alexandru Dinca;Veronica Ferrari;Daniele Giannetti;Loretta Ichim;Amin Kargar;Catalin Lazar;Lara Maistrello;Alfredo Navarra;David Niederprüm;Peter Offermans;Brendan O'Flynn;Lorenzo Palazzetti;Niccolò Patelli;Cristina M. Pinotti;Dan Popescu;Aravind K. Rangarajan;Liviu Serghei;Alessandro Ulrici;Lars Wolf;Dimitrios Zorbas;Leonard Zurek","doi":"10.1109/TAFE.2024.3429537","DOIUrl":null,"url":null,"abstract":"In this article, we introduce machine learning (ML) techniques developed for the monitoring of the brown marmorated stink bug (BMSB), a significant agricultural pest responsible for considerable crop damage worldwide. The <sc>Haly.ID</small> project, initiated in early 2021, aims to enhance BMSB monitoring through the utilization of information and communication technology methods. We employ computer vision techniques on RGB images captured by drones and investigate the performance of deep neural networks to evaluate the impact of this invasive species on crop yields in orchards around Europe. Specifically, we evaluate the single shot multibox detector, detection transformer, <sc>YOLOv5</small>, <sc>YOLOv9</small>, and <sc>YOLOv10</small> architectures for full-level and patch-level image analysis, respectively. To improve detection accuracy, we experiment with shortwave infrared hyperspectral imaging (SWIR-HSI) in laboratory settings. Given that pheromone baited traps are the most accepted tools for pest detection by field operators, we also propose an Internet of Things sticky trap with an integrated camera equipped with lightweight convolutional neural networks models operating “on the edge” in this resource constrained system. In addition, we develop a client–server application for real-time bug detection, integrating the ML models to provide accessible results to farmers. Lastly, we explore effective postharvesting strategies using SWIR-HSI images to detect insect punctures invisible to the naked eye, thereby enhancing the quality of marketable fruit.","PeriodicalId":100637,"journal":{"name":"IEEE Transactions on AgriFood Electronics","volume":"3 1","pages":"6-17"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10623862","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on AgriFood Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10623862/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we introduce machine learning (ML) techniques developed for the monitoring of the brown marmorated stink bug (BMSB), a significant agricultural pest responsible for considerable crop damage worldwide. The Haly.ID project, initiated in early 2021, aims to enhance BMSB monitoring through the utilization of information and communication technology methods. We employ computer vision techniques on RGB images captured by drones and investigate the performance of deep neural networks to evaluate the impact of this invasive species on crop yields in orchards around Europe. Specifically, we evaluate the single shot multibox detector, detection transformer, YOLOv5, YOLOv9, and YOLOv10 architectures for full-level and patch-level image analysis, respectively. To improve detection accuracy, we experiment with shortwave infrared hyperspectral imaging (SWIR-HSI) in laboratory settings. Given that pheromone baited traps are the most accepted tools for pest detection by field operators, we also propose an Internet of Things sticky trap with an integrated camera equipped with lightweight convolutional neural networks models operating “on the edge” in this resource constrained system. In addition, we develop a client–server application for real-time bug detection, integrating the ML models to provide accessible results to farmers. Lastly, we explore effective postharvesting strategies using SWIR-HSI images to detect insect punctures invisible to the naked eye, thereby enhancing the quality of marketable fruit.
超越肉眼:计算机视觉检测褐马默罗臭虫及其穿孔
在本文中,我们介绍了用于监测棕纹臭虫(BMSB)的机器学习(ML)技术,棕纹臭虫是一种重要的农业害虫,在世界范围内造成了相当大的作物损害。黑尔。ID项目于2021年初启动,旨在通过利用信息和通信技术方法加强对BMSB的监测。我们采用计算机视觉技术对无人机捕获的RGB图像进行处理,并研究深度神经网络的性能,以评估这种入侵物种对欧洲各地果园作物产量的影响。具体来说,我们分别评估了单镜头多盒探测器、检测变压器、YOLOv5、YOLOv9和YOLOv10架构用于全电平和贴片级图像分析。为了提高检测精度,我们在实验室环境下进行了短波红外高光谱成像(SWIR-HSI)实验。鉴于信息素诱捕器是现场操作人员最接受的害虫检测工具,我们还提出了一种物联网粘性诱捕器,该诱捕器带有集成摄像机,配备轻型卷积神经网络模型,在这个资源受限的系统中“在边缘”运行。此外,我们开发了一个用于实时错误检测的客户端-服务器应用程序,集成了ML模型,为农民提供可访问的结果。最后,我们探索了有效的采后策略,利用SWIR-HSI图像检测肉眼看不见的昆虫穿孔,从而提高可销售水果的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信