Evolutionary insights into elongation factor G using AlphaFold and ancestral analysis

IF 7 2区 医学 Q1 BIOLOGY
Shawonur Rahaman , Jacob H. Steele , Yi Zeng , Shoujun Xu , Yuhong Wang
{"title":"Evolutionary insights into elongation factor G using AlphaFold and ancestral analysis","authors":"Shawonur Rahaman ,&nbsp;Jacob H. Steele ,&nbsp;Yi Zeng ,&nbsp;Shoujun Xu ,&nbsp;Yuhong Wang","doi":"10.1016/j.compbiomed.2025.110188","DOIUrl":null,"url":null,"abstract":"<div><div>Elongation factor G (EF-G) is crucial for ribosomal translocation, a fundamental step in protein synthesis. Despite its indispensable role, the conformational dynamics and evolution of EF-G remain elusive. By integrating AlphaFold structural predictions with multiple sequence alignment (MSA)-based sequence analysis, we explored the conformational landscape, sequence-specific patterns, and evolutionary divergence of EF-G. We identified five high-confidence structural states of wild type (WT) EF-G, revealing broader conformational diversity than previously captured by experimental data. Phylogenetic analysis and MSA-embedded sequence patterns demonstrated that single-point mutations in the switch I loop modulate equilibrium between the two dominant conformational states, con1 and con2, which exhibit distinct functional specializations. Reconstructions of two ancestral EF-Gs revealed minimal GTPase activity and reduced translocase function in both forms, suggesting that robust translocase activity emerged after the divergence of con1 and con2. However, ancestral EF-Gs retained the fidelity of three-nucleotide translocation, underscoring the early evolutionary conservation of accurate mRNA movement. These findings establish a framework for understanding how conformational flexibility shapes EF-G function and specialization. Moreover, our computational pipeline can be extended to other translational GTPases, providing broader insights into the evolution of the translational machinery. This study highlights the power of AlphaFold-assisted structural analysis in revealing the mechanistic and evolutionary relationships involved in protein translation.</div></div>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"191 ","pages":"Article 110188"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010482525005396","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Elongation factor G (EF-G) is crucial for ribosomal translocation, a fundamental step in protein synthesis. Despite its indispensable role, the conformational dynamics and evolution of EF-G remain elusive. By integrating AlphaFold structural predictions with multiple sequence alignment (MSA)-based sequence analysis, we explored the conformational landscape, sequence-specific patterns, and evolutionary divergence of EF-G. We identified five high-confidence structural states of wild type (WT) EF-G, revealing broader conformational diversity than previously captured by experimental data. Phylogenetic analysis and MSA-embedded sequence patterns demonstrated that single-point mutations in the switch I loop modulate equilibrium between the two dominant conformational states, con1 and con2, which exhibit distinct functional specializations. Reconstructions of two ancestral EF-Gs revealed minimal GTPase activity and reduced translocase function in both forms, suggesting that robust translocase activity emerged after the divergence of con1 and con2. However, ancestral EF-Gs retained the fidelity of three-nucleotide translocation, underscoring the early evolutionary conservation of accurate mRNA movement. These findings establish a framework for understanding how conformational flexibility shapes EF-G function and specialization. Moreover, our computational pipeline can be extended to other translational GTPases, providing broader insights into the evolution of the translational machinery. This study highlights the power of AlphaFold-assisted structural analysis in revealing the mechanistic and evolutionary relationships involved in protein translation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信