Eric Palomo, Anastasiya Krech, Yu Jen Hsueh, Zexian Li, Marcos G. Suero
{"title":"Rh-Catalyzed Enantioselective Aryl C–H Bond Cyclopropylation","authors":"Eric Palomo, Anastasiya Krech, Yu Jen Hsueh, Zexian Li, Marcos G. Suero","doi":"10.1021/jacs.5c02331","DOIUrl":null,"url":null,"abstract":"Herein, we disclose the discovery and development of a site-, regio-, diastereo-, and enantioselective aryl C–H bond cyclopropylation using diazomethyl hypervalent iodine reagents, styrenes, and paddlewheel dirhodium carboxylate catalysts. A key aspect of this work was the catalytic generation of a chiral Rh(II) carbene through an electrophilic aromatic substitution with chiral Rh(II) carbynoids. The strategy allows the construction of cyclopropane rings using aryl C–H bonds from aromatic feedstocks and drug molecules and promises to reach an unexplored “cyclopropanated” chemical space highly difficult to reach by current strategies.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"21 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.5c02331","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, we disclose the discovery and development of a site-, regio-, diastereo-, and enantioselective aryl C–H bond cyclopropylation using diazomethyl hypervalent iodine reagents, styrenes, and paddlewheel dirhodium carboxylate catalysts. A key aspect of this work was the catalytic generation of a chiral Rh(II) carbene through an electrophilic aromatic substitution with chiral Rh(II) carbynoids. The strategy allows the construction of cyclopropane rings using aryl C–H bonds from aromatic feedstocks and drug molecules and promises to reach an unexplored “cyclopropanated” chemical space highly difficult to reach by current strategies.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.