Gunn-Helen Moen, Liang-Dar Hwang, Caroline Brito Nunes, Nicole M. Warrington, David M. Evans
{"title":"The genetics of low and high birthweight and their relationship with cardiometabolic disease","authors":"Gunn-Helen Moen, Liang-Dar Hwang, Caroline Brito Nunes, Nicole M. Warrington, David M. Evans","doi":"10.1007/s00125-025-06420-8","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Aims/hypothesis</h3><p>Low birthweight infants are at increased risk not only of mortality, but also of type 2 diabetes mellitus and CVD in later life. At the opposite end of the spectrum, high birthweight infants have increased risk of birth complications, such as shoulder dystocia, neonatal hypoglycaemia and obesity, and similarly increased risk of type 2 diabetes mellitus and CVD. However, previous genome-wide association studies (GWAS) of birthweight in the UK Biobank have primarily focused on individuals within the ‘normal’ range and have excluded individuals with high and low birthweight (<2.5 kg or >4.5 kg). The aim of this study was to investigate genetic variation associated within the tail ends of the birthweight distribution, to: (1) see whether the genetic factors operating in these regions were different from those that explained variation in birthweight within the normal range; (2) explore the genetic correlation between extremes of birthweight and cardiometabolic disease; and (3) investigate whether analysing the full distribution of birthweight values, including the extremes, improved the ability to detect genuine loci in GWAS.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We performed case–control GWAS analysis of low (<2.5 kg) and high (>4.5 kg) birthweight in the UK Biobank using REGENIE software (<i>N</i><sub>low</sub>=20,947; <i>N</i><sub>high</sub>=12,715; <i>N</i><sub>controls</sub>=207,506) and conducted three continuous GWAS of birthweight, one including the full range of birthweights, one involving a truncated GWAS including only individuals with birthweights between 2.5 and 4.5 kg and a third GWAS that winsorised birthweight values <2.5 kg and >4.5 kg. Additionally, we performed bivariate linkage disequilibrium (LD) score regression to estimate the genetic correlation between low/normal/high birthweight and cardiometabolic traits.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Bivariate LD score regression analyses suggested that high birthweight had a mostly similar genetic aetiology to birthweight within the normal range (genetic correlation coefficient [<i>r</i><sub>G</sub>]=0.91, 95% CI 0.83, 0.99), whereas there was more evidence for a separate set of genes underlying low birthweight (<i>r</i><sub>G</sub>=−0.74, 95% CI 0.66, 0.82). Low birthweight was also significantly positively genetically correlated with most cardiometabolic traits and diseases we examined, whereas high birthweight was mostly positively genetically correlated with adiposity and anthropometric-related traits. The winsorisation strategy performed best in terms of locus detection, with the number of independent genome-wide significant associations (<i>p</i><5×10<sup>−8</sup>) increasing from 120 genetic variants at 94 loci in the truncated GWAS to 270 genetic variants at 178 loci, including 27 variants at 25 loci that had not been identified in previous birthweight GWAS. This included a novel low-frequency missense variant in the <i>ABCC8</i> gene, a gene known to be involved in congenital hyperinsulinism, neonatal diabetes mellitus and MODY, that was estimated to be responsible for a 170 g increase in birthweight amongst carriers.</p><h3 data-test=\"abstract-sub-heading\">Conclusions/interpretation</h3><p>Our results underscore the importance of genetic factors in the genesis of the phenotypic correlation between birthweight and cardiometabolic traits and diseases.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":"183 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00125-025-06420-8","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Aims/hypothesis
Low birthweight infants are at increased risk not only of mortality, but also of type 2 diabetes mellitus and CVD in later life. At the opposite end of the spectrum, high birthweight infants have increased risk of birth complications, such as shoulder dystocia, neonatal hypoglycaemia and obesity, and similarly increased risk of type 2 diabetes mellitus and CVD. However, previous genome-wide association studies (GWAS) of birthweight in the UK Biobank have primarily focused on individuals within the ‘normal’ range and have excluded individuals with high and low birthweight (<2.5 kg or >4.5 kg). The aim of this study was to investigate genetic variation associated within the tail ends of the birthweight distribution, to: (1) see whether the genetic factors operating in these regions were different from those that explained variation in birthweight within the normal range; (2) explore the genetic correlation between extremes of birthweight and cardiometabolic disease; and (3) investigate whether analysing the full distribution of birthweight values, including the extremes, improved the ability to detect genuine loci in GWAS.
Methods
We performed case–control GWAS analysis of low (<2.5 kg) and high (>4.5 kg) birthweight in the UK Biobank using REGENIE software (Nlow=20,947; Nhigh=12,715; Ncontrols=207,506) and conducted three continuous GWAS of birthweight, one including the full range of birthweights, one involving a truncated GWAS including only individuals with birthweights between 2.5 and 4.5 kg and a third GWAS that winsorised birthweight values <2.5 kg and >4.5 kg. Additionally, we performed bivariate linkage disequilibrium (LD) score regression to estimate the genetic correlation between low/normal/high birthweight and cardiometabolic traits.
Results
Bivariate LD score regression analyses suggested that high birthweight had a mostly similar genetic aetiology to birthweight within the normal range (genetic correlation coefficient [rG]=0.91, 95% CI 0.83, 0.99), whereas there was more evidence for a separate set of genes underlying low birthweight (rG=−0.74, 95% CI 0.66, 0.82). Low birthweight was also significantly positively genetically correlated with most cardiometabolic traits and diseases we examined, whereas high birthweight was mostly positively genetically correlated with adiposity and anthropometric-related traits. The winsorisation strategy performed best in terms of locus detection, with the number of independent genome-wide significant associations (p<5×10−8) increasing from 120 genetic variants at 94 loci in the truncated GWAS to 270 genetic variants at 178 loci, including 27 variants at 25 loci that had not been identified in previous birthweight GWAS. This included a novel low-frequency missense variant in the ABCC8 gene, a gene known to be involved in congenital hyperinsulinism, neonatal diabetes mellitus and MODY, that was estimated to be responsible for a 170 g increase in birthweight amongst carriers.
Conclusions/interpretation
Our results underscore the importance of genetic factors in the genesis of the phenotypic correlation between birthweight and cardiometabolic traits and diseases.
期刊介绍:
Diabetologia, the authoritative journal dedicated to diabetes research, holds high visibility through society membership, libraries, and social media. As the official journal of the European Association for the Study of Diabetes, it is ranked in the top quartile of the 2019 JCR Impact Factors in the Endocrinology & Metabolism category. The journal boasts dedicated and expert editorial teams committed to supporting authors throughout the peer review process.