Yonatan Chemla, Itai Levin, Yueyang Fan, Anna A. Johnson, Connor W. Coley, Christopher A. Voigt
{"title":"Hyperspectral reporters for long-distance and wide-area detection of gene expression in living bacteria","authors":"Yonatan Chemla, Itai Levin, Yueyang Fan, Anna A. Johnson, Connor W. Coley, Christopher A. Voigt","doi":"10.1038/s41587-025-02622-y","DOIUrl":null,"url":null,"abstract":"<p>Genetically encoded reporters are suitable for short-distance imaging in the laboratory but not for scanning wide outdoor areas from a distance. Here we introduce hyperspectral reporters (HSRs) designed for hyperspectral imaging cameras that are commonly mounted on unmanned aerial vehicles and satellites. HSR genes encode enzymes that produce a molecule with a unique absorption signature that can be reliably distinguished in hyperspectral images. Quantum mechanical simulations of 20,170 metabolites identified candidate HSRs, leading to the selection of biliverdin IXα and bacteriochlorophyll <i>a</i> for their distinct absorption spectra and biosynthetic feasibility. These genes were integrated into chemical sensor circuits in soil (<i>Pseudomonas putida</i>) and aquatic (<i>Rubrivivax gelatinosus</i>) bacteria. The bacteria were detectable outdoors under ambient light from up to 90 m in a single 4,000-m<sup>2</sup> hyperspectral image taken using fixed and unmanned aerial vehicle-mounted cameras. The dose–response functions of the chemical sensors were measured remotely. HSRs enable large-scale studies and applications in ecology, agriculture, environmental monitoring, forensics and defense.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"16 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-025-02622-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetically encoded reporters are suitable for short-distance imaging in the laboratory but not for scanning wide outdoor areas from a distance. Here we introduce hyperspectral reporters (HSRs) designed for hyperspectral imaging cameras that are commonly mounted on unmanned aerial vehicles and satellites. HSR genes encode enzymes that produce a molecule with a unique absorption signature that can be reliably distinguished in hyperspectral images. Quantum mechanical simulations of 20,170 metabolites identified candidate HSRs, leading to the selection of biliverdin IXα and bacteriochlorophyll a for their distinct absorption spectra and biosynthetic feasibility. These genes were integrated into chemical sensor circuits in soil (Pseudomonas putida) and aquatic (Rubrivivax gelatinosus) bacteria. The bacteria were detectable outdoors under ambient light from up to 90 m in a single 4,000-m2 hyperspectral image taken using fixed and unmanned aerial vehicle-mounted cameras. The dose–response functions of the chemical sensors were measured remotely. HSRs enable large-scale studies and applications in ecology, agriculture, environmental monitoring, forensics and defense.
期刊介绍:
Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research.
The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field.
Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology.
In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.