{"title":"Geometric Constraints in Deep Learning Frameworks: A Survey","authors":"Vibhas K Vats, David Crandall","doi":"10.1145/3729221","DOIUrl":null,"url":null,"abstract":"Stereophotogrammetry [62] is an established technique for scene understanding. Its origins go back to at least the 1800s when people first started to investigate using photographs to measure the physical properties of the world. Since then, thousands of approaches have been explored. The classic geometric technique of Shape from Stereo is built on using geometry to define constraints on scene and camera deep learning without any attempt to explicitly model the geometry. In this survey, we explore geometry-inspired deep learning-based frameworks. We compare and contrast geometry enforcing constraints integrated into deep learning frameworks for depth estimation and other closely related vision tasks. We present a new taxonomy for prevalent geometry enforcing constraints used in modern deep learning frameworks. We also present insightful observations and potential future research directions.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"59 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3729221","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Stereophotogrammetry [62] is an established technique for scene understanding. Its origins go back to at least the 1800s when people first started to investigate using photographs to measure the physical properties of the world. Since then, thousands of approaches have been explored. The classic geometric technique of Shape from Stereo is built on using geometry to define constraints on scene and camera deep learning without any attempt to explicitly model the geometry. In this survey, we explore geometry-inspired deep learning-based frameworks. We compare and contrast geometry enforcing constraints integrated into deep learning frameworks for depth estimation and other closely related vision tasks. We present a new taxonomy for prevalent geometry enforcing constraints used in modern deep learning frameworks. We also present insightful observations and potential future research directions.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.