{"title":"TFcomb identifies transcription factor combinations for cellular reprogramming based on single-cell multiomics data","authors":"Chen Li, Sijie Chen, Yixin Chen, Haiyang Bian, Minsheng Hao, Lei Wei, Xuegong Zhang","doi":"10.1101/gr.279955.124","DOIUrl":null,"url":null,"abstract":"Reprogramming cell state transitions provides the potential for cell engineering and regenerative therapy for many diseases. Finding the reprogramming transcription factors (TFs) and their combinations that can direct the desired state transition is crucial for the task. Computational methods have been developed to identify such reprogramming TFs. However, most of them can only generate a ranked list of individual TFs and ignore the identification of TF combinations. Even for individual reprogramming TF identification, current methods often fail to put the real effective reprogramming TFs at the top of their rankings. To address these challenges, we developed TFcomb, a computational method that leverages single-cell multiomics data to identify reprogramming TFs and TF combinations that can direct cell state transitions. We modeled the task of finding reprogramming TFs and their combinations as an inverse problem to enable searching for answers in very high dimensional space, and used Tikhonov regularization to guarantee the generalization ability of solutions. For the coefficient matrix of the model, we designed a graph attention network to augment gene regulatory networks built with single-cell RNA-seq and ATAC-seq data. Benchmarking experiments on data of human embryonic stem cells demonstrated superior performance of TFcomb against existing methods for identifying individual TFs. We curated datasets of multiple cell reprogramming cases and demonstrated that TFcomb can efficiently identify reprogramming TF combinations from a vast pool of potential combinations. We applied TFcomb on a dataset of mouse hair follicle development and found key TFs in cell differentiation. All experiments showed that TFcomb is powerful in identifying reprogramming TFs and TF combinations from single-cell datasets to empower future cell engineering.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"74 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279955.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reprogramming cell state transitions provides the potential for cell engineering and regenerative therapy for many diseases. Finding the reprogramming transcription factors (TFs) and their combinations that can direct the desired state transition is crucial for the task. Computational methods have been developed to identify such reprogramming TFs. However, most of them can only generate a ranked list of individual TFs and ignore the identification of TF combinations. Even for individual reprogramming TF identification, current methods often fail to put the real effective reprogramming TFs at the top of their rankings. To address these challenges, we developed TFcomb, a computational method that leverages single-cell multiomics data to identify reprogramming TFs and TF combinations that can direct cell state transitions. We modeled the task of finding reprogramming TFs and their combinations as an inverse problem to enable searching for answers in very high dimensional space, and used Tikhonov regularization to guarantee the generalization ability of solutions. For the coefficient matrix of the model, we designed a graph attention network to augment gene regulatory networks built with single-cell RNA-seq and ATAC-seq data. Benchmarking experiments on data of human embryonic stem cells demonstrated superior performance of TFcomb against existing methods for identifying individual TFs. We curated datasets of multiple cell reprogramming cases and demonstrated that TFcomb can efficiently identify reprogramming TF combinations from a vast pool of potential combinations. We applied TFcomb on a dataset of mouse hair follicle development and found key TFs in cell differentiation. All experiments showed that TFcomb is powerful in identifying reprogramming TFs and TF combinations from single-cell datasets to empower future cell engineering.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.