Effect of carbon support on the electrochemical performance of Pt-based anodes for bio-alcohol fuel cells

IF 2.8 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiaoyan Qing, Zhongda Liu, Christos Chatzilias, Alexandros K. Bikogiannakis, Georgios Kyriakou, Pedro Fardim, Alexandros Katsaounis, Eftychia Martino
{"title":"Effect of carbon support on the electrochemical performance of Pt-based anodes for bio-alcohol fuel cells","authors":"Xiaoyan Qing,&nbsp;Zhongda Liu,&nbsp;Christos Chatzilias,&nbsp;Alexandros K. Bikogiannakis,&nbsp;Georgios Kyriakou,&nbsp;Pedro Fardim,&nbsp;Alexandros Katsaounis,&nbsp;Eftychia Martino","doi":"10.1002/jctb.7841","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> BACKGROUND</h3>\n \n <p>Direct alcohol fuel cells (DAFCs) are promising energy conversion devices, but their broader application is limited by slow kinetics of alcohol oxidation, catalyst poisoning, and high cost of Pt-based materials. In the present study we investigate the impact of different carbon supports, specifically graphene nanoplatelets (GNPs) and carbon black (Vulcan XC-72), on the electrochemical performance of Pt-based anodes. Additionally, we investigate ternary PtRuSn catalysts, where the incorporation of Sn is intended to enhance catalytic performance while potentially reducing costs through the partial substitution of Ru.</p>\n </section>\n \n <section>\n \n <h3> RESULTS</h3>\n \n <p>Catalysts were synthesized using the wet impregnation method, and their structural and electronic properties were thoroughly characterized using a variety of analytical techniques. Catalysts supported on GNPs exhibited smaller metal particle sizes and enhanced catalytic activity compared to those supported on Vulcan XC-72. Electrochemical analysis (CO stripping, cyclic voltammetry, and chronoamperometry) revealed that the GNP-supported catalysts demonstrated lower onset potential, higher electrochemical active surface area, and higher current densities during alcohol oxidation. Notably, the PtRuSn(5:4:1)/GNPs catalyst exhibited the highest activity for ethanol and glycerol oxidation, highlighting the role of GNPs in enhancing both the stability and catalytic performance.</p>\n </section>\n \n <section>\n \n <h3> CONCLUSION</h3>\n \n <p>Overall, the findings indicate that GNPs can function as a highly effective support for anode catalysts in DAFCs, enhancing dispersion and stability. The use of ternary PtRuSn catalysts appears promising for improving alcohol oxidation while offering a more balanced approach to performance and material cost. These insights could contribute to the development of more efficient and economically viable fuel cell technologies. © 2025 The Author(s). <i>Journal of Chemical Technology and Biotechnology</i> published by John Wiley &amp; Sons Ltd on behalf of Society of Chemical Industry (SCI).</p>\n </section>\n </div>","PeriodicalId":15335,"journal":{"name":"Journal of chemical technology and biotechnology","volume":"100 5","pages":"1025-1039"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jctb.7841","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chemical technology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jctb.7841","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

BACKGROUND

Direct alcohol fuel cells (DAFCs) are promising energy conversion devices, but their broader application is limited by slow kinetics of alcohol oxidation, catalyst poisoning, and high cost of Pt-based materials. In the present study we investigate the impact of different carbon supports, specifically graphene nanoplatelets (GNPs) and carbon black (Vulcan XC-72), on the electrochemical performance of Pt-based anodes. Additionally, we investigate ternary PtRuSn catalysts, where the incorporation of Sn is intended to enhance catalytic performance while potentially reducing costs through the partial substitution of Ru.

RESULTS

Catalysts were synthesized using the wet impregnation method, and their structural and electronic properties were thoroughly characterized using a variety of analytical techniques. Catalysts supported on GNPs exhibited smaller metal particle sizes and enhanced catalytic activity compared to those supported on Vulcan XC-72. Electrochemical analysis (CO stripping, cyclic voltammetry, and chronoamperometry) revealed that the GNP-supported catalysts demonstrated lower onset potential, higher electrochemical active surface area, and higher current densities during alcohol oxidation. Notably, the PtRuSn(5:4:1)/GNPs catalyst exhibited the highest activity for ethanol and glycerol oxidation, highlighting the role of GNPs in enhancing both the stability and catalytic performance.

CONCLUSION

Overall, the findings indicate that GNPs can function as a highly effective support for anode catalysts in DAFCs, enhancing dispersion and stability. The use of ternary PtRuSn catalysts appears promising for improving alcohol oxidation while offering a more balanced approach to performance and material cost. These insights could contribute to the development of more efficient and economically viable fuel cell technologies. © 2025 The Author(s). Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
5.90%
发文量
268
审稿时长
1.7 months
期刊介绍: Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信