Xinyu Wang, Linlin Xie, Aiqun Li, Tao Wang, Cantian Yang
{"title":"Numerical Simulations of Shaking Table Tests of Metro-Induced Vertical Vibrations of Interstory-Isolated, Base-Isolated, and Fixed-Base Structures","authors":"Xinyu Wang, Linlin Xie, Aiqun Li, Tao Wang, Cantian Yang","doi":"10.1155/stc/8105608","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Metro networks have been extensively developed in large cities to satisfy traffic demands. Adjacent to subways, there has been an increasing construction of fixed-base, base-isolated, and interstory-isolated buildings on metro depots. Notably, metro-induced environmental vibrations have led to vibrations in buildings, thus affecting human health and the regular operation of sensitive equipment. Numerical simulations are considered a valuable method for assessing building vibrations. However, research on a generalized numerical simulation strategy for simulating the metro-induced vibrations of the abovementioned three types of buildings remains rare. Hence, this study recommends a generalized numerical simulation strategy and validates it through the comparison between the results of shaking table tests. The acceleration time histories of floor, distributions of the acceleration at different positions on the slab and along the height of the building, and one-third octave band vertical acceleration levels were accurately simulated for the three structures. Meanwhile, the simulation accuracies of three types of damping models were discussed. The relative differences between the simulated and experimental maximum acceleration amplification coefficients and one-third octave band vertical acceleration levels were both less than 4.2%. Furthermore, the influences of the mesh sizes of the elements for the slabs and the parameters of the Rayleigh damping model on the simulated results were investigated. The recommended simulation strategy can contribute to further investigation of the metro-induced vertical vibration assessment of different types of structures.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8105608","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/8105608","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metro networks have been extensively developed in large cities to satisfy traffic demands. Adjacent to subways, there has been an increasing construction of fixed-base, base-isolated, and interstory-isolated buildings on metro depots. Notably, metro-induced environmental vibrations have led to vibrations in buildings, thus affecting human health and the regular operation of sensitive equipment. Numerical simulations are considered a valuable method for assessing building vibrations. However, research on a generalized numerical simulation strategy for simulating the metro-induced vibrations of the abovementioned three types of buildings remains rare. Hence, this study recommends a generalized numerical simulation strategy and validates it through the comparison between the results of shaking table tests. The acceleration time histories of floor, distributions of the acceleration at different positions on the slab and along the height of the building, and one-third octave band vertical acceleration levels were accurately simulated for the three structures. Meanwhile, the simulation accuracies of three types of damping models were discussed. The relative differences between the simulated and experimental maximum acceleration amplification coefficients and one-third octave band vertical acceleration levels were both less than 4.2%. Furthermore, the influences of the mesh sizes of the elements for the slabs and the parameters of the Rayleigh damping model on the simulated results were investigated. The recommended simulation strategy can contribute to further investigation of the metro-induced vertical vibration assessment of different types of structures.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.