{"title":"Inhibition Effects of Some Phenolic Anthraquinone Derivatives on Lactoperoxidase Activity: A Detailed in Vitro and in Silico investigation","authors":"Işıl Nihan Korkmaz, Halil Şenol, Ramazan Kalın","doi":"10.1007/s11483-025-09957-8","DOIUrl":null,"url":null,"abstract":"<div><p>The basic nutrient of all living beings in the developmental age is milk. Milk contains many things necessary for ideal nutrition. One of the enzymes found in bovine milk is lactoperoxidase (LPO; EC 1.11.1.7). The LPO system functions as a natural defense system, especially in newborn babies. Despite the many benefits of milk, contamination of breast milk with environmental toxins is common. Over time, people accumulate a lifetime load of chemicals from drugs to environmental pollutants, and these can be passed on to the baby during breastfeeding. Anthraquinones are colorful compounds that can be produced both naturally and synthetically. These compounds are widely used in industry and medicine due to their biological activities and colorful structures. In this study, in vitro enzyme inhibition study, molecular docking and molecular dynamics (MD) simulation parameters were examined to investigate the inhibitory potential of anthraquinone derivatives, which are widely used as coloring agents, against the lactoperoxidase enzyme. The inhibitors showed competitive inhibition with <i>K</i><sub>i</sub> values between 0.4964 ± 0.042–2.0907 ± 0.1044 µM. 1,2-Dihydroxy-anthraquinone was predicted to have the highest affinity on the LPO receptor, with estimated free binding energies of -7.11 kcal/mol. The stability of both ligand and protein, as shown by the low RMSD and RMSF values, shows that 1,2-dihydroxy-anthraquinone <b>(2)</b> maintains strong and stable interactions throughout the MD simulation, further supporting the high binding affinity and potential biological activity of the compound. We hope that this study will guide the development of drugs targeting the LPO enzyme with anthraquinone derivatives.</p></div>","PeriodicalId":564,"journal":{"name":"Food Biophysics","volume":"20 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11483-025-09957-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Biophysics","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s11483-025-09957-8","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The basic nutrient of all living beings in the developmental age is milk. Milk contains many things necessary for ideal nutrition. One of the enzymes found in bovine milk is lactoperoxidase (LPO; EC 1.11.1.7). The LPO system functions as a natural defense system, especially in newborn babies. Despite the many benefits of milk, contamination of breast milk with environmental toxins is common. Over time, people accumulate a lifetime load of chemicals from drugs to environmental pollutants, and these can be passed on to the baby during breastfeeding. Anthraquinones are colorful compounds that can be produced both naturally and synthetically. These compounds are widely used in industry and medicine due to their biological activities and colorful structures. In this study, in vitro enzyme inhibition study, molecular docking and molecular dynamics (MD) simulation parameters were examined to investigate the inhibitory potential of anthraquinone derivatives, which are widely used as coloring agents, against the lactoperoxidase enzyme. The inhibitors showed competitive inhibition with Ki values between 0.4964 ± 0.042–2.0907 ± 0.1044 µM. 1,2-Dihydroxy-anthraquinone was predicted to have the highest affinity on the LPO receptor, with estimated free binding energies of -7.11 kcal/mol. The stability of both ligand and protein, as shown by the low RMSD and RMSF values, shows that 1,2-dihydroxy-anthraquinone (2) maintains strong and stable interactions throughout the MD simulation, further supporting the high binding affinity and potential biological activity of the compound. We hope that this study will guide the development of drugs targeting the LPO enzyme with anthraquinone derivatives.
期刊介绍:
Biophysical studies of foods and agricultural products involve research at the interface of chemistry, biology, and engineering, as well as the new interdisciplinary areas of materials science and nanotechnology. Such studies include but are certainly not limited to research in the following areas: the structure of food molecules, biopolymers, and biomaterials on the molecular, microscopic, and mesoscopic scales; the molecular basis of structure generation and maintenance in specific foods, feeds, food processing operations, and agricultural products; the mechanisms of microbial growth, death and antimicrobial action; structure/function relationships in food and agricultural biopolymers; novel biophysical techniques (spectroscopic, microscopic, thermal, rheological, etc.) for structural and dynamical characterization of food and agricultural materials and products; the properties of amorphous biomaterials and their influence on chemical reaction rate, microbial growth, or sensory properties; and molecular mechanisms of taste and smell.
A hallmark of such research is a dependence on various methods of instrumental analysis that provide information on the molecular level, on various physical and chemical theories used to understand the interrelations among biological molecules, and an attempt to relate macroscopic chemical and physical properties and biological functions to the molecular structure and microscopic organization of the biological material.