Ning Tang;Muhammad Farhan;Pir Mohammad;M. Abdullah-Al-Wadud;Saddam Hussain;Umair Hamza;Rana Muhammad Zulqarnain;Nazih Yacer Rebouh
{"title":"Enhancing Urban Heat Island Analysis Through Multisensor Data Fusion and GRU-Based Deep Learning Approaches for Climate Modeling","authors":"Ning Tang;Muhammad Farhan;Pir Mohammad;M. Abdullah-Al-Wadud;Saddam Hussain;Umair Hamza;Rana Muhammad Zulqarnain;Nazih Yacer Rebouh","doi":"10.1109/JSTARS.2025.3554529","DOIUrl":null,"url":null,"abstract":"Rapid urbanization and land-use changes have exacerbated the urban heat island (UHI) effect, threatening urban sustainability and climate resilience. This study uses a novel gated recurrent unit (GRU)-based deep learning model in addition to the Mann–Kendall trend, Pearson correlation, and continuous wavelet to investigate the UHI phenomenon in Multan city of Pakistan. The approach utilizes the normalized difference vegetation index (NDVI) and normalized difference built-up index (NDBI) as essential variables to forecast UHI accurately using a GRU-based deep learning model using a monthly Landsat dataset from 2001 to 2023. The results from the Mann–Kendall test indicated a minor increase in monthly UHI values, accompanied by notable seasonal fluctuations with a substantial decrease in winter (Tau = −3.486), whereas a notable increase is observed in the summer season (Tau = 0.158). The NDVI exhibited a notable annual increase (Tau = 3.43), suggesting enhanced vegetation health. Conversely, NDBI showed a significant decrease (Tau = −0.907). The result of Pearson's correlation study showed that UHI is significantly negatively correlated with NDVI and positively with NDBI, with a correlation coefficient of −0.540 and 0.344, respectively. Wavelet coherence analysis revealed considerable seasonal and annual relationships between UHI, NDVI, and NDBI. The GRU-based model achieved a coefficient of determination (R<sup>2</sup>) of 0.90 with an RMSE value of 0.09, indicating robust predictive performance. The SHAP (SHapley Additive explanations) analysis revealed that NDVI is the predictor with the most significant influence. The adopted approach emphasizes vegetation's crucial function in reducing UHI's effects and offers valuable insights for urban planning and measures to mitigate climate change.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"9279-9296"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10938603","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10938603/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid urbanization and land-use changes have exacerbated the urban heat island (UHI) effect, threatening urban sustainability and climate resilience. This study uses a novel gated recurrent unit (GRU)-based deep learning model in addition to the Mann–Kendall trend, Pearson correlation, and continuous wavelet to investigate the UHI phenomenon in Multan city of Pakistan. The approach utilizes the normalized difference vegetation index (NDVI) and normalized difference built-up index (NDBI) as essential variables to forecast UHI accurately using a GRU-based deep learning model using a monthly Landsat dataset from 2001 to 2023. The results from the Mann–Kendall test indicated a minor increase in monthly UHI values, accompanied by notable seasonal fluctuations with a substantial decrease in winter (Tau = −3.486), whereas a notable increase is observed in the summer season (Tau = 0.158). The NDVI exhibited a notable annual increase (Tau = 3.43), suggesting enhanced vegetation health. Conversely, NDBI showed a significant decrease (Tau = −0.907). The result of Pearson's correlation study showed that UHI is significantly negatively correlated with NDVI and positively with NDBI, with a correlation coefficient of −0.540 and 0.344, respectively. Wavelet coherence analysis revealed considerable seasonal and annual relationships between UHI, NDVI, and NDBI. The GRU-based model achieved a coefficient of determination (R2) of 0.90 with an RMSE value of 0.09, indicating robust predictive performance. The SHAP (SHapley Additive explanations) analysis revealed that NDVI is the predictor with the most significant influence. The adopted approach emphasizes vegetation's crucial function in reducing UHI's effects and offers valuable insights for urban planning and measures to mitigate climate change.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.