A Unified Approach to Video Anomaly Detection: Advancements in Feature Extraction, Weak Supervision, and Strategies for Class Imbalance

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Rui Z. Barbosa;Hugo S. Oliveira
{"title":"A Unified Approach to Video Anomaly Detection: Advancements in Feature Extraction, Weak Supervision, and Strategies for Class Imbalance","authors":"Rui Z. Barbosa;Hugo S. Oliveira","doi":"10.1109/ACCESS.2025.3557948","DOIUrl":null,"url":null,"abstract":"This paper explores advancements in Video Anomaly Detection (VAD), combining theoretical insights with practical solutions to address model limitations. Through comprehensive experimental analysis, the study examines the role of feature representations, sampling strategies, and curriculum learning in enhancing VAD performance. Key findings include the impact of class imbalance on the Cross-Modal Awareness-Local Arousal (CMALA) architecture and the effectiveness of techniques like pseudo-curriculum learning in mitigating noisy classes, such as “Car Accident.” Novel strategies like the Sample-Batch Selection (SBS) dynamic segment selection and pre-trained image-text models, including Contrastive Language-Image Pre-training (CLIP) and ViTamin encoder, significantly improve anomaly detection. The research underscores the potential of multimodal VAD, highlighting the integration of audio and visual modalities and the development of multimodal fusion techniques. To support this evolution, the study proposes a Unified WorkStation 4 VAD (UWS4VAD) to streamline research workflows and introduces a new VAD benchmark incorporating multimodal data and textual information. The work envisions enhanced anomaly interpretation and performance by leveraging joint representation learning and Large Language Models (LLMs). The findings set the stage for future advancements, advocating for large-scale pre-training on audio-visual datasets and shifting toward a more integrated, multimodal approach to VADs. Source code of the project available at <uri>https://github.com/zuble/uws4vad</uri>","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"60969-60986"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10949172","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10949172/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores advancements in Video Anomaly Detection (VAD), combining theoretical insights with practical solutions to address model limitations. Through comprehensive experimental analysis, the study examines the role of feature representations, sampling strategies, and curriculum learning in enhancing VAD performance. Key findings include the impact of class imbalance on the Cross-Modal Awareness-Local Arousal (CMALA) architecture and the effectiveness of techniques like pseudo-curriculum learning in mitigating noisy classes, such as “Car Accident.” Novel strategies like the Sample-Batch Selection (SBS) dynamic segment selection and pre-trained image-text models, including Contrastive Language-Image Pre-training (CLIP) and ViTamin encoder, significantly improve anomaly detection. The research underscores the potential of multimodal VAD, highlighting the integration of audio and visual modalities and the development of multimodal fusion techniques. To support this evolution, the study proposes a Unified WorkStation 4 VAD (UWS4VAD) to streamline research workflows and introduces a new VAD benchmark incorporating multimodal data and textual information. The work envisions enhanced anomaly interpretation and performance by leveraging joint representation learning and Large Language Models (LLMs). The findings set the stage for future advancements, advocating for large-scale pre-training on audio-visual datasets and shifting toward a more integrated, multimodal approach to VADs. Source code of the project available at https://github.com/zuble/uws4vad
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信