Konstantinos Blazakis;Nikolaos Schetakis;Mahmoud M. Badr;Davit Aghamalyan;Konstantinos Stavrakakis;Georgios Stavrakakis
{"title":"Power Theft Detection in Smart Grids Using Quantum Machine Learning","authors":"Konstantinos Blazakis;Nikolaos Schetakis;Mahmoud M. Badr;Davit Aghamalyan;Konstantinos Stavrakakis;Georgios Stavrakakis","doi":"10.1109/ACCESS.2025.3558143","DOIUrl":null,"url":null,"abstract":"Electricity theft can lead to enormous economic losses and cause operational and security problems for electricity networks and utilities. Most current research has focused on electricity theft detection in the consumption sector. However, the high penetration rate of distributed generation (DG) can lead to an increase in power theft attacks in this sector via smart meter manipulation. This study is an extension of prior works focused on electricity theft detection in the consumption and generation domains of a smart grid environment with DG. This study proposes a novel electricity theft detection framework based on quantum machine learning (QML). The elegant field of QML has been used to demonstrate that data classification becomes more efficient in higher-dimensional spaces. An extensive numerical study was conducted to determine the type of QML architecture that can perform well and efficiently in electricity theft detection cases. The technique presented here has not yet been extensively studied in the domain of energy theft detection. Extensive experiments were conducted to assess this approach, and an accuracy of 0.87 was achieved with respect to the classical consumption domain, whereas an accuracy of 0.977 was achieved with respect to the net metering domain.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":"13 ","pages":"61511-61525"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10949078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10949078/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Electricity theft can lead to enormous economic losses and cause operational and security problems for electricity networks and utilities. Most current research has focused on electricity theft detection in the consumption sector. However, the high penetration rate of distributed generation (DG) can lead to an increase in power theft attacks in this sector via smart meter manipulation. This study is an extension of prior works focused on electricity theft detection in the consumption and generation domains of a smart grid environment with DG. This study proposes a novel electricity theft detection framework based on quantum machine learning (QML). The elegant field of QML has been used to demonstrate that data classification becomes more efficient in higher-dimensional spaces. An extensive numerical study was conducted to determine the type of QML architecture that can perform well and efficiently in electricity theft detection cases. The technique presented here has not yet been extensively studied in the domain of energy theft detection. Extensive experiments were conducted to assess this approach, and an accuracy of 0.87 was achieved with respect to the classical consumption domain, whereas an accuracy of 0.977 was achieved with respect to the net metering domain.
IEEE AccessCOMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍:
IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest.
IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on:
Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals.
Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering.
Development of new or improved fabrication or manufacturing techniques.
Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.