Wen Jiang, Zhen Liu, Yanping Wang, Yun Lin, Yang Li, Fukun Bi
{"title":"Enhancing jamming source tracking capability via adaptive grey wolf optimization mechanism for passive radar network","authors":"Wen Jiang, Zhen Liu, Yanping Wang, Yun Lin, Yang Li, Fukun Bi","doi":"10.1016/j.sigpro.2025.110026","DOIUrl":null,"url":null,"abstract":"<div><div>In a complex electromagnetic environment, the tracking of jamming source by passive radar network is of great significance for enhancing anti-jamming capability, military combat safety, and strategic decision-making. However, traditional jamming source tracking algorithms suffer from low tracking accuracy and convergence speed, primarily due to the high nonlinearity and the unknown noise characteristics of the passive radar system. In order to improve the capability of jamming source tracking for passive radar network, a maximum correntropy cubature Kalman filter based on improved grey wolf optimization algorithm is proposed. Firstly, the grey wolf optimization mechanism improved by Gaussian random walk and Gaussian mutation strategies is proposed to accurately estimate the characteristics of unknown process and measurement noise, providing more accurate model parameters for the cubature Kalman filter algorithm. Then, an adaptive maximum correntropy criterion is designed, which optimizes the filter gain by adaptively adjusting the kernel size to suppress the influence of outliers on the filtering estimation and enhances the robustness of the algorithm. Finally, experiment of jamming source tracking indicates that the proposed algorithm significantly outperforms traditional algorithms in terms of tracking accuracy and convergence speed under diverse unknown noise environments.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"235 ","pages":"Article 110026"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425001409","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In a complex electromagnetic environment, the tracking of jamming source by passive radar network is of great significance for enhancing anti-jamming capability, military combat safety, and strategic decision-making. However, traditional jamming source tracking algorithms suffer from low tracking accuracy and convergence speed, primarily due to the high nonlinearity and the unknown noise characteristics of the passive radar system. In order to improve the capability of jamming source tracking for passive radar network, a maximum correntropy cubature Kalman filter based on improved grey wolf optimization algorithm is proposed. Firstly, the grey wolf optimization mechanism improved by Gaussian random walk and Gaussian mutation strategies is proposed to accurately estimate the characteristics of unknown process and measurement noise, providing more accurate model parameters for the cubature Kalman filter algorithm. Then, an adaptive maximum correntropy criterion is designed, which optimizes the filter gain by adaptively adjusting the kernel size to suppress the influence of outliers on the filtering estimation and enhances the robustness of the algorithm. Finally, experiment of jamming source tracking indicates that the proposed algorithm significantly outperforms traditional algorithms in terms of tracking accuracy and convergence speed under diverse unknown noise environments.
期刊介绍:
Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing.
Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.