Constantin Buschhaus , Arvid Butting , Judith Michael , Verena Nitsch , Sebastian Pütz , Bernhard Rumpe , Carolin Stellmacher , Sabine Theis
{"title":"Overcoming the hurdle of legal expertise: A reusable model for smartwatch privacy policies","authors":"Constantin Buschhaus , Arvid Butting , Judith Michael , Verena Nitsch , Sebastian Pütz , Bernhard Rumpe , Carolin Stellmacher , Sabine Theis","doi":"10.1016/j.datak.2025.102443","DOIUrl":null,"url":null,"abstract":"<div><div>Regulations for privacy protection aim to protect individuals from the unauthorized storage, processing, and transfer of their personal data but oftentimes fail in providing helpful support for understanding these regulations. To better communicate privacy policies for smartwatches, we need an in-depth understanding of their concepts and provide better ways to enable developers to integrate them when engineering systems. Up to now, no conceptual model exists covering privacy statements from different smartwatch manufacturers that is reusable for developers. This paper introduces such a conceptual model for privacy policies of smartwatches and shows its use in a model-driven software engineering approach to create a platform for data visualization of wearable privacy policies from different smartwatch manufacturers. We have analyzed the privacy policies of various manufacturers and extracted the relevant concepts. Moreover, we have checked the model with lawyers for its correctness, instantiated it with concrete data, and used it in a model-driven software engineering approach to create a platform for data visualization. This reusable privacy policy model can enable developers to easily represent privacy policies in their systems. This provides a foundation for more structured and understandable privacy policies which, in the long run, can increase the data sovereignty of application users.</div></div>","PeriodicalId":55184,"journal":{"name":"Data & Knowledge Engineering","volume":"159 ","pages":"Article 102443"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & Knowledge Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169023X25000382","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Regulations for privacy protection aim to protect individuals from the unauthorized storage, processing, and transfer of their personal data but oftentimes fail in providing helpful support for understanding these regulations. To better communicate privacy policies for smartwatches, we need an in-depth understanding of their concepts and provide better ways to enable developers to integrate them when engineering systems. Up to now, no conceptual model exists covering privacy statements from different smartwatch manufacturers that is reusable for developers. This paper introduces such a conceptual model for privacy policies of smartwatches and shows its use in a model-driven software engineering approach to create a platform for data visualization of wearable privacy policies from different smartwatch manufacturers. We have analyzed the privacy policies of various manufacturers and extracted the relevant concepts. Moreover, we have checked the model with lawyers for its correctness, instantiated it with concrete data, and used it in a model-driven software engineering approach to create a platform for data visualization. This reusable privacy policy model can enable developers to easily represent privacy policies in their systems. This provides a foundation for more structured and understandable privacy policies which, in the long run, can increase the data sovereignty of application users.
期刊介绍:
Data & Knowledge Engineering (DKE) stimulates the exchange of ideas and interaction between these two related fields of interest. DKE reaches a world-wide audience of researchers, designers, managers and users. The major aim of the journal is to identify, investigate and analyze the underlying principles in the design and effective use of these systems.