Ayodeji James Akande, Zhe Hou, Ernest Foo, Qinyi Li
{"title":"LTL-based runtime verification framework for cyber-attack anomaly prediction in cyber–physical systems","authors":"Ayodeji James Akande, Zhe Hou, Ernest Foo, Qinyi Li","doi":"10.1016/j.cose.2025.104455","DOIUrl":null,"url":null,"abstract":"<div><div>An anomaly is any unexpected or abnormal behaviour, event, or data pattern within a network of physical and computational components caused by data errors, cyber-attacks, hardware failures, or other unforeseen events. Anomaly detection analyses events after they occur, while anomaly prediction forecasts them before they manifest. The increasing complexity of Cyber-Physical Systems (CPS) presents challenges in fault management and vulnerability to advanced attacks, highlighting the need for early intervention through anomaly prediction. Existing anomaly prediction methods often fail due to a lack of formal guarantees required for safety-critical applications. In this paper, we introduce our anomaly prediction framework which merges the advantages of data analytics and the derivation of Linear Temporal Logic (LTL) formulas. LTL-based runtime monitoring and checking is a well-established technique efficient for tackling challenges in real-time and promptly. The framework processes historical data, clusters them to extract predictive patterns, and forms data sequences that represent these trends. These sequences are fed into an LTL learning algorithm to produce a formula that represents the pattern. This formula functions as a security property programmed into a runtime checker to verify system correctness and predict the possibility of anomalies. We evaluated our framework using three datasets collected from a cyber-physical system testbed and the experimental findings demonstrate a minimum accuracy of 90% in predicting anomalies.</div></div>","PeriodicalId":51004,"journal":{"name":"Computers & Security","volume":"155 ","pages":"Article 104455"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Security","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167404825001440","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
An anomaly is any unexpected or abnormal behaviour, event, or data pattern within a network of physical and computational components caused by data errors, cyber-attacks, hardware failures, or other unforeseen events. Anomaly detection analyses events after they occur, while anomaly prediction forecasts them before they manifest. The increasing complexity of Cyber-Physical Systems (CPS) presents challenges in fault management and vulnerability to advanced attacks, highlighting the need for early intervention through anomaly prediction. Existing anomaly prediction methods often fail due to a lack of formal guarantees required for safety-critical applications. In this paper, we introduce our anomaly prediction framework which merges the advantages of data analytics and the derivation of Linear Temporal Logic (LTL) formulas. LTL-based runtime monitoring and checking is a well-established technique efficient for tackling challenges in real-time and promptly. The framework processes historical data, clusters them to extract predictive patterns, and forms data sequences that represent these trends. These sequences are fed into an LTL learning algorithm to produce a formula that represents the pattern. This formula functions as a security property programmed into a runtime checker to verify system correctness and predict the possibility of anomalies. We evaluated our framework using three datasets collected from a cyber-physical system testbed and the experimental findings demonstrate a minimum accuracy of 90% in predicting anomalies.
期刊介绍:
Computers & Security is the most respected technical journal in the IT security field. With its high-profile editorial board and informative regular features and columns, the journal is essential reading for IT security professionals around the world.
Computers & Security provides you with a unique blend of leading edge research and sound practical management advice. It is aimed at the professional involved with computer security, audit, control and data integrity in all sectors - industry, commerce and academia. Recognized worldwide as THE primary source of reference for applied research and technical expertise it is your first step to fully secure systems.