Ecological coastal design: Evaluating microtexture and groove manipulations in the Persian Gulf and Gulf of Oman

IF 2.3 3区 地球科学 Q2 OCEANOGRAPHY
Amin Afzali , Ali Nasrolahi , Mehdi Bolouki Kourandeh
{"title":"Ecological coastal design: Evaluating microtexture and groove manipulations in the Persian Gulf and Gulf of Oman","authors":"Amin Afzali ,&nbsp;Ali Nasrolahi ,&nbsp;Mehdi Bolouki Kourandeh","doi":"10.1016/j.dsr2.2025.105482","DOIUrl":null,"url":null,"abstract":"<div><div>The exponential growth of the human population, particularly in coastal regions, has led to the widespread construction of coastal infrastructures such as breakwaters, seawalls, and revetments. These structures differ considerably from natural habitats in their physical characteristics, chemical composition, and ecological connectivity. In the present study, using eco-engineering, various concrete panels with distinct surface textures and designs (panel group) as well as different manipulations (manipulation group) were implemented in three coastal locations in the Persian Gulf and Gulf of Oman. Consequently, colonization patterns of marine organisms were monitored monthly over a one-year period. The results indicated a significant effect of location on both species richness and abundance within the panel group. Moreover, the type of manipulation had a significant impact on species abundance. Panels featuring microtexture displayed the greatest species richness, followed by panels that included shells. Multivariate analyses revealed significant differences in community structure across diverse eco-engineered structures. The study concluded that ecological engineering techniques, such as incorporating microtexture or millimeter-scaled manipulations, can significantly impact community structure, species richness, and abundance in coastal habitats. The design of eco-engineered structures should be tailored to the prevailing environmental conditions to effectively enhance coastal habitats and promote biodiversity.</div></div>","PeriodicalId":11120,"journal":{"name":"Deep-sea Research Part Ii-topical Studies in Oceanography","volume":"221 ","pages":"Article 105482"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep-sea Research Part Ii-topical Studies in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967064525000311","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential growth of the human population, particularly in coastal regions, has led to the widespread construction of coastal infrastructures such as breakwaters, seawalls, and revetments. These structures differ considerably from natural habitats in their physical characteristics, chemical composition, and ecological connectivity. In the present study, using eco-engineering, various concrete panels with distinct surface textures and designs (panel group) as well as different manipulations (manipulation group) were implemented in three coastal locations in the Persian Gulf and Gulf of Oman. Consequently, colonization patterns of marine organisms were monitored monthly over a one-year period. The results indicated a significant effect of location on both species richness and abundance within the panel group. Moreover, the type of manipulation had a significant impact on species abundance. Panels featuring microtexture displayed the greatest species richness, followed by panels that included shells. Multivariate analyses revealed significant differences in community structure across diverse eco-engineered structures. The study concluded that ecological engineering techniques, such as incorporating microtexture or millimeter-scaled manipulations, can significantly impact community structure, species richness, and abundance in coastal habitats. The design of eco-engineered structures should be tailored to the prevailing environmental conditions to effectively enhance coastal habitats and promote biodiversity.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
16.70%
发文量
115
审稿时长
3 months
期刊介绍: Deep-Sea Research Part II: Topical Studies in Oceanography publishes topical issues from the many international and interdisciplinary projects which are undertaken in oceanography. Besides these special issues from projects, the journal publishes collections of papers presented at conferences. The special issues regularly have electronic annexes of non-text material (numerical data, images, images, video, etc.) which are published with the special issues in ScienceDirect. Deep-Sea Research Part II was split off as a separate journal devoted to topical issues in 1993. Its companion journal Deep-Sea Research Part I: Oceanographic Research Papers, publishes the regular research papers in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信