A reinforcement learning approach for optimized MRI sampling with region-specific fidelity

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ruru Xu, Ilkay Oksuz
{"title":"A reinforcement learning approach for optimized MRI sampling with region-specific fidelity","authors":"Ruru Xu,&nbsp;Ilkay Oksuz","doi":"10.1016/j.neucom.2025.130116","DOIUrl":null,"url":null,"abstract":"<div><div>Accelerating Magnetic Resonance Imaging (MRI) acquisition while preserving diagnostic quality remains a significant challenge in medical imaging. This paper introduces a novel reinforcement learning approach for optimizing k-space sampling, addressing the critical need for maintaining high-fidelity reconstructions, particularly in clinically significant regions. Our method bridges k-space and image domains by employing a multi-layer Fast Fourier Transform (FFT) network architecture coupled with a comprehensive reward function. The reward function integrates global SSIM, region-specific metrics, and k-space MSE, achieving SSIM scores of 0.9764 (global) and PSNR of 43.427 in cardiac imaging, with a Dice score of 0.9606 for critical regions. This function uniquely balances global image fidelity with region-specific accuracy, ensuring optimal sampling in areas of high diagnostic value. We present a reinforcement learning framework that maintains consistency with MRI physics throughout the optimization process by utilizing Proximal Policy Optimization (PPO) for concurrent refinement of policy and value networks, while minimizing unnecessary domain transformations. We validate our approach on two diverse datasets: the ACDC cardiac MRI and the FastMRI knee dataset, demonstrating its effectiveness across different regions of clinical interest and showing consistent improvements across 4x and 6x acceleration factors. The proposed k-space sampling optimization technique not only enhances reconstruction quality but also serves as a versatile front-end tool, adaptable to various MRI reconstruction algorithms. The code is publicly available at <span><span>https://github.com/Ruru-Xu/KSRO</span><svg><path></path></svg></span></div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"638 ","pages":"Article 130116"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092523122500788X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accelerating Magnetic Resonance Imaging (MRI) acquisition while preserving diagnostic quality remains a significant challenge in medical imaging. This paper introduces a novel reinforcement learning approach for optimizing k-space sampling, addressing the critical need for maintaining high-fidelity reconstructions, particularly in clinically significant regions. Our method bridges k-space and image domains by employing a multi-layer Fast Fourier Transform (FFT) network architecture coupled with a comprehensive reward function. The reward function integrates global SSIM, region-specific metrics, and k-space MSE, achieving SSIM scores of 0.9764 (global) and PSNR of 43.427 in cardiac imaging, with a Dice score of 0.9606 for critical regions. This function uniquely balances global image fidelity with region-specific accuracy, ensuring optimal sampling in areas of high diagnostic value. We present a reinforcement learning framework that maintains consistency with MRI physics throughout the optimization process by utilizing Proximal Policy Optimization (PPO) for concurrent refinement of policy and value networks, while minimizing unnecessary domain transformations. We validate our approach on two diverse datasets: the ACDC cardiac MRI and the FastMRI knee dataset, demonstrating its effectiveness across different regions of clinical interest and showing consistent improvements across 4x and 6x acceleration factors. The proposed k-space sampling optimization technique not only enhances reconstruction quality but also serves as a versatile front-end tool, adaptable to various MRI reconstruction algorithms. The code is publicly available at https://github.com/Ruru-Xu/KSRO

Abstract Image

区域特定保真度优化MRI采样的强化学习方法
在保持诊断质量的同时加快磁共振成像(MRI)采集速度仍然是医学成像领域的一大挑战。本文介绍了一种用于优化 k 空间采样的新型强化学习方法,以满足保持高保真重构的关键需求,尤其是在具有临床意义的区域。我们的方法通过采用多层快速傅立叶变换(FFT)网络架构和综合奖励函数,在 k 空间和图像域之间架起了桥梁。奖励函数整合了全局 SSIM、特定区域指标和 k 空间 MSE,在心脏成像中的 SSIM 得分为 0.9764(全局),PSNR 为 43.427,关键区域的 Dice 得分为 0.9606。该功能独特地平衡了全局图像保真度和特定区域的准确性,确保在诊断价值高的区域进行最佳采样。我们提出了一种强化学习框架,通过利用近端策略优化(PPO)同时完善策略和价值网络,在整个优化过程中保持与核磁共振成像物理学的一致性,同时最大限度地减少不必要的领域转换。我们在两个不同的数据集上验证了我们的方法:ACDC 心脏 MRI 和 FastMRI 膝关节数据集,证明了它在不同临床兴趣区域的有效性,并显示了在 4 倍和 6 倍加速因子下的一致改进。所提出的 k 空间采样优化技术不仅能提高重建质量,还能作为多功能前端工具,适用于各种磁共振成像重建算法。代码可在 https://github.com/Ruru-Xu/KSRO 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信