{"title":"Constructions of normal numbers with infinite digit sets","authors":"Aafko Boonstra , Charlene Kalle","doi":"10.1016/j.jco.2025.101945","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>L</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>d</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> be any ordered probability sequence, i.e., satisfying <span><math><mn>0</mn><mo><</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>≤</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi></mrow></msub></math></span> for each <span><math><mi>d</mi><mo>∈</mo><mi>N</mi></math></span> and <span><math><msub><mrow><mo>∑</mo></mrow><mrow><mi>d</mi><mo>∈</mo><mi>N</mi></mrow></msub><msub><mrow><mi>L</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span>. We construct sequences <span><math><mi>A</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>N</mi></mrow></msub></math></span> on the countably infinite alphabet <span><math><mi>N</mi></math></span> in which each possible block of digits <span><math><msub><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∈</mo><mi>N</mi></math></span>, <span><math><mi>k</mi><mo>∈</mo><mi>N</mi></math></span>, occurs with frequency <span><math><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>d</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><msub><mrow><mi>L</mi></mrow><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>d</mi></mrow></msub></mrow></msub></math></span>. In other words, we construct <em>L</em>-normal sequences. These sequences can then be projected to normal numbers in various affine number systems, such as real numbers <span><math><mi>x</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> that are normal in GLS number systems that correspond to the sequence <em>L</em> or higher dimensional variants. In particular, this construction provides a family of numbers that have a normal Lüroth expansion.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"89 ","pages":"Article 101945"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X25000238","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be any ordered probability sequence, i.e., satisfying for each and . We construct sequences on the countably infinite alphabet in which each possible block of digits , , occurs with frequency . In other words, we construct L-normal sequences. These sequences can then be projected to normal numbers in various affine number systems, such as real numbers that are normal in GLS number systems that correspond to the sequence L or higher dimensional variants. In particular, this construction provides a family of numbers that have a normal Lüroth expansion.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.