Soil conservation and information technologies: A literature review

IF 6.3 Q1 AGRICULTURAL ENGINEERING
Jô Vinícius Barrozo Chaves , Claudia Liliana Gutierrez Rosas , Camila Porfirio Albuquerque Ferraz , Luiz Henrique Freguglia Aiello , Afonso Peche Filho , Lia Toledo Moreira Mota , Regina Márcia Longo , Admilson Írio Ribeiro
{"title":"Soil conservation and information technologies: A literature review","authors":"Jô Vinícius Barrozo Chaves ,&nbsp;Claudia Liliana Gutierrez Rosas ,&nbsp;Camila Porfirio Albuquerque Ferraz ,&nbsp;Luiz Henrique Freguglia Aiello ,&nbsp;Afonso Peche Filho ,&nbsp;Lia Toledo Moreira Mota ,&nbsp;Regina Márcia Longo ,&nbsp;Admilson Írio Ribeiro","doi":"10.1016/j.atech.2025.100935","DOIUrl":null,"url":null,"abstract":"<div><div>The evolution of real-time data technologies has significantly transformed several sectors, including agriculture. Advances in sensors, transducers, and artificial intelligence (AI) have driven automation and optimization in agricultural production processes, enabling detailed analyses for soil conservation. However, intensive land use and climate change represent critical challenges, threatening biodiversity and water resource quality. Image processing and spatial data analysis tools support informed decision-making in precision agriculture. This study conducted a systematic review on the SCOPUS platform, emphasizing AI technologies applied to soil management, coverage, and classification. The optimal combination of search terms, including “Agriculture”, “Deep Learning”, and “Soil”, yielded 909 publications. We selected 190 publications for detailed analysis. The review underscored the importance of remote sensing in developing indexes and predictive models, despite existing limitations in the scale of analysis. The growing application of neural network algorithms to recognize soil and plant structures reflects advancements in Information and Communication Technologies (ICT). Since 2020, there has been a notable increase in AI-driven approaches to soil conservation, highlighting a shift toward sustainable and regenerative management practices.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"11 ","pages":"Article 100935"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525001686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of real-time data technologies has significantly transformed several sectors, including agriculture. Advances in sensors, transducers, and artificial intelligence (AI) have driven automation and optimization in agricultural production processes, enabling detailed analyses for soil conservation. However, intensive land use and climate change represent critical challenges, threatening biodiversity and water resource quality. Image processing and spatial data analysis tools support informed decision-making in precision agriculture. This study conducted a systematic review on the SCOPUS platform, emphasizing AI technologies applied to soil management, coverage, and classification. The optimal combination of search terms, including “Agriculture”, “Deep Learning”, and “Soil”, yielded 909 publications. We selected 190 publications for detailed analysis. The review underscored the importance of remote sensing in developing indexes and predictive models, despite existing limitations in the scale of analysis. The growing application of neural network algorithms to recognize soil and plant structures reflects advancements in Information and Communication Technologies (ICT). Since 2020, there has been a notable increase in AI-driven approaches to soil conservation, highlighting a shift toward sustainable and regenerative management practices.
土壤保持与信息技术:文献综述
实时数据技术的发展极大地改变了包括农业在内的多个部门。传感器、传感器和人工智能(AI)的进步推动了农业生产过程的自动化和优化,使土壤保持的详细分析成为可能。然而,土地集约利用和气候变化是严峻的挑战,威胁着生物多样性和水资源质量。图像处理和空间数据分析工具支持精准农业的明智决策。本研究对SCOPUS平台进行了系统综述,重点介绍了人工智能技术在土壤管理、覆盖和分类方面的应用。搜索词的最佳组合,包括“农业”、“深度学习”和“土壤”,产生了909篇出版物。我们选取了190篇文献进行详细分析。审查强调了遥感在制定指数和预测模型方面的重要性,尽管目前在分析规模方面存在局限性。神经网络算法越来越多地应用于识别土壤和植物结构,反映了信息和通信技术(ICT)的进步。自2020年以来,人工智能驱动的土壤保持方法显著增加,突显了向可持续和再生管理实践的转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信