Influence of predator–taxis and time delay on the dynamical behavior of a predator–prey model with prey refuge and predator harvesting

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yehu Lv
{"title":"Influence of predator–taxis and time delay on the dynamical behavior of a predator–prey model with prey refuge and predator harvesting","authors":"Yehu Lv","doi":"10.1016/j.chaos.2025.116388","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a delay-driven population chemotaxis model with practical significance in biology, incorporating both prey refuge and predator harvesting terms. We first prove the local-in-time existence and uniqueness of classical solutions to this model for <span><math><mrow><mi>τ</mi><mo>=</mo><mn>0</mn></mrow></math></span>, and the global existence and uniqueness of classical solutions to this model for <span><math><mrow><mi>τ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>. Then, using stability theory, bifurcation theory, and normal form theory, we analyze the local asymptotic stability of the positive constant steady state of the model, as well as the effects of predator chemotaxis and delay on the dynamics of the model. When the delay is zero, through rigorous mathematical analysis, we find that predator–taxis can induce a Turing bifurcation, and the combined effects of predator–taxis and random diffusion of the prey can trigger a Turing–Turing bifurcation. When the delay is nonzero, we show that the delay can induce a Hopf bifurcation, and the joint effects of predator–taxis and delay can result in Hopf–Hopf and Turing–Hopf bifurcations. Furthermore, we rigorously derive the third-order truncated normal form for the Hopf bifurcation of the model, which allows us to determine the direction of the Hopf bifurcation and the stability of the periodic solutions generated by the Hopf bifurcation. At the same time, numerical simulations are conducted to verify the results of the theoretical analysis.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116388"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925004011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a delay-driven population chemotaxis model with practical significance in biology, incorporating both prey refuge and predator harvesting terms. We first prove the local-in-time existence and uniqueness of classical solutions to this model for τ=0, and the global existence and uniqueness of classical solutions to this model for τ>0. Then, using stability theory, bifurcation theory, and normal form theory, we analyze the local asymptotic stability of the positive constant steady state of the model, as well as the effects of predator chemotaxis and delay on the dynamics of the model. When the delay is zero, through rigorous mathematical analysis, we find that predator–taxis can induce a Turing bifurcation, and the combined effects of predator–taxis and random diffusion of the prey can trigger a Turing–Turing bifurcation. When the delay is nonzero, we show that the delay can induce a Hopf bifurcation, and the joint effects of predator–taxis and delay can result in Hopf–Hopf and Turing–Hopf bifurcations. Furthermore, we rigorously derive the third-order truncated normal form for the Hopf bifurcation of the model, which allows us to determine the direction of the Hopf bifurcation and the stability of the periodic solutions generated by the Hopf bifurcation. At the same time, numerical simulations are conducted to verify the results of the theoretical analysis.
在本文中,我们考虑了一个在生物学中具有实际意义的延迟驱动种群趋化模型,该模型包含猎物避难和捕食者收获两个项。我们首先证明了τ=0 时该模型经典解的局部时间存在性和唯一性,以及τ>0 时该模型经典解的全局存在性和唯一性。然后,利用稳定性理论、分岔理论和正态理论,分析了模型正常稳态的局部渐近稳定性,以及捕食者趋化和延迟对模型动力学的影响。当延迟为零时,通过严谨的数学分析,我们发现捕食者趋化能诱发图灵分岔,捕食者趋化和猎物随机扩散的共同作用能引发图灵-图灵分岔。当延迟不为零时,我们证明延迟会诱发霍普夫分岔,捕食者-税收和延迟的共同作用会导致霍普夫-霍普夫和图灵-霍普夫分岔。此外,我们还严格推导出了模型霍普夫分岔的三阶截断法形式,从而确定了霍普夫分岔的方向以及霍普夫分岔产生的周期解的稳定性。同时,我们还进行了数值模拟,以验证理论分析的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信