{"title":"Security-reliability analysis in uplink cognitive satellite-terrestrial networks with LEO relaying","authors":"Peng Zhang , Qing Guo","doi":"10.1016/j.comnet.2025.111272","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the security and reliability performance of hybrid cognitive satellite-terrestrial networks employing a Low Earth Orbit (LEO) satellite as a decode-and-forward (DF) relay. The terrestrial user (TU) operates within an underlay cognitive radio (CR) network, where the primary user (PU) shares its spectrum with the TU while imposing interference power constraints to protect its quality-of-service. To counteract eavesdropping from a terrestrial adversary, the TU incorporates artificial noise (AN) into its transmission, creating a tradeoff between security and reliability. The TU-to-LEO and TU-to-PU links are modeled using Shadowed Rician and Nakagami-<span><math><mi>m</mi></math></span> fading, respectively. Key performance metrics, including the outage probability (OP) and intercept probability (IP), are analyzed under varying system parameters such as power-splitting factor, channel conditions, and interference thresholds. Analytical results are validated through Monte Carlo simulations, and simplified approximations are presented for practical implementation. Results demonstrate the efficacy of the proposed approach in balancing security and reliability.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"264 ","pages":"Article 111272"},"PeriodicalIF":4.4000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625002403","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the security and reliability performance of hybrid cognitive satellite-terrestrial networks employing a Low Earth Orbit (LEO) satellite as a decode-and-forward (DF) relay. The terrestrial user (TU) operates within an underlay cognitive radio (CR) network, where the primary user (PU) shares its spectrum with the TU while imposing interference power constraints to protect its quality-of-service. To counteract eavesdropping from a terrestrial adversary, the TU incorporates artificial noise (AN) into its transmission, creating a tradeoff between security and reliability. The TU-to-LEO and TU-to-PU links are modeled using Shadowed Rician and Nakagami- fading, respectively. Key performance metrics, including the outage probability (OP) and intercept probability (IP), are analyzed under varying system parameters such as power-splitting factor, channel conditions, and interference thresholds. Analytical results are validated through Monte Carlo simulations, and simplified approximations are presented for practical implementation. Results demonstrate the efficacy of the proposed approach in balancing security and reliability.
期刊介绍:
Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.