{"title":"A tripartite evolutionary game for strategic decision-making in live-streaming e-commerce","authors":"Georgia Fargetta, Laura R.M. Scrimali","doi":"10.1016/j.jocs.2025.102585","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid growth of live-streaming has transformed traditional e-commerce into an interactive and immersive experience, giving birth to live-streaming e-commerce. This paper investigates the strategic interactions between brands, social media influencers, and consumers under this mechanism. Using evolutionary game theory, we model decision-making dynamics across these three parties and analyze how their strategies develop over time. Our framework incorporates contractual penalties between brands and influencers, rewards for influencers, product returns, and subscription fees to capture realistic market behaviors. We derive replicator dynamics equations for each participant group and identify stable equilibrium strategies for the entire system. The application of replicator dynamics offers valuable perspectives on temporary states and strategies that achieve long-term equilibrium. We also present numerical simulations to validate the effectiveness of our model. In addition, we show how parameters, such as penalties and rewards, influence strategy selection and allow the system to achieve stability successfully. This research provides actionable recommendations for optimizing partnerships in live-streaming e-commerce supply chains.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"87 ","pages":"Article 102585"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750325000626","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth of live-streaming has transformed traditional e-commerce into an interactive and immersive experience, giving birth to live-streaming e-commerce. This paper investigates the strategic interactions between brands, social media influencers, and consumers under this mechanism. Using evolutionary game theory, we model decision-making dynamics across these three parties and analyze how their strategies develop over time. Our framework incorporates contractual penalties between brands and influencers, rewards for influencers, product returns, and subscription fees to capture realistic market behaviors. We derive replicator dynamics equations for each participant group and identify stable equilibrium strategies for the entire system. The application of replicator dynamics offers valuable perspectives on temporary states and strategies that achieve long-term equilibrium. We also present numerical simulations to validate the effectiveness of our model. In addition, we show how parameters, such as penalties and rewards, influence strategy selection and allow the system to achieve stability successfully. This research provides actionable recommendations for optimizing partnerships in live-streaming e-commerce supply chains.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).