{"title":"Numerical experiments on the hydrodynamic structure of a barchan dune constrained by dense atmospheres: Comparative applications to Venus and Titan","authors":"Xiaosi Zhou","doi":"10.1016/j.pss.2025.106115","DOIUrl":null,"url":null,"abstract":"<div><div>Venus and Titan, two very different terrestrial bodies in the solar system possessing extremely hot and extremely cold near-surface dense atmospheres, respectively, have been identified as having surface dune distributions associated with aeolian sand transport. Previous studies on planetary dunes have rarely involved a detailed investigation of flow behavior over dunes under such extreme environmental conditions. This study takes the highly migratory elementary barchan dune as the research object, and aiming at the realistic thermophysical environment of the wind field near the surfaces of Venus and Titan, a computational fluid dynamics model of the turbulent boundary layer on the surface that considers the real gas effect and planetary gravity constraints was constructed to carry out numerical experiments and comparative analysis of the hydrodynamic behavior of sand dunes induced by different planetary atmospheric environments. The predicted results show that there are notable differences in the leeward secondary flow structures of the barchan dunes induced by the real gas flows of Venus and Titan. Under the conditions of a 0-km elevation and the same incident flow speed, the flow reattachment length of the Venusian dune is slightly smaller than that of Titan's dune. This may be caused by differences in the thermo-hydrodynamics of planetary atmospheric fluids and differences in the turbulent flow represented by the flow Reynolds number. In essence, for Venusian dunes with high Reynolds number turbulence, the kinematic viscosity, as the only variable parameter, has no significant impact on the flow reattachment length. At the same wind intensity conforming to the in-situ data, for both Venus and Titan, the dune areas where the wind can cause fine sand of the same size to take off and subsequently be eroded tend to be located on the crest of the dune. The maximum dimensionless friction velocity, which is used to characterize the erosion intensity, decreases linearly with increasing elevation on Venus. This indirectly clarifies the previous argument about the relationship between planetary atmospheric density and aeolian geomorphology scales in a new light. The quantitative comparisons of the eroded extent and intensity on dune surfaces suggest that the induced effect of the atmospheric environment on Titan at 0 km is the closest to that on Venus at 11 km. This research can provide inspiration and a theoretical reference for the study of comparative planetology in the field of aeolian geomorphology.</div></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"261 ","pages":"Article 106115"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063325000820","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Venus and Titan, two very different terrestrial bodies in the solar system possessing extremely hot and extremely cold near-surface dense atmospheres, respectively, have been identified as having surface dune distributions associated with aeolian sand transport. Previous studies on planetary dunes have rarely involved a detailed investigation of flow behavior over dunes under such extreme environmental conditions. This study takes the highly migratory elementary barchan dune as the research object, and aiming at the realistic thermophysical environment of the wind field near the surfaces of Venus and Titan, a computational fluid dynamics model of the turbulent boundary layer on the surface that considers the real gas effect and planetary gravity constraints was constructed to carry out numerical experiments and comparative analysis of the hydrodynamic behavior of sand dunes induced by different planetary atmospheric environments. The predicted results show that there are notable differences in the leeward secondary flow structures of the barchan dunes induced by the real gas flows of Venus and Titan. Under the conditions of a 0-km elevation and the same incident flow speed, the flow reattachment length of the Venusian dune is slightly smaller than that of Titan's dune. This may be caused by differences in the thermo-hydrodynamics of planetary atmospheric fluids and differences in the turbulent flow represented by the flow Reynolds number. In essence, for Venusian dunes with high Reynolds number turbulence, the kinematic viscosity, as the only variable parameter, has no significant impact on the flow reattachment length. At the same wind intensity conforming to the in-situ data, for both Venus and Titan, the dune areas where the wind can cause fine sand of the same size to take off and subsequently be eroded tend to be located on the crest of the dune. The maximum dimensionless friction velocity, which is used to characterize the erosion intensity, decreases linearly with increasing elevation on Venus. This indirectly clarifies the previous argument about the relationship between planetary atmospheric density and aeolian geomorphology scales in a new light. The quantitative comparisons of the eroded extent and intensity on dune surfaces suggest that the induced effect of the atmospheric environment on Titan at 0 km is the closest to that on Venus at 11 km. This research can provide inspiration and a theoretical reference for the study of comparative planetology in the field of aeolian geomorphology.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research