On the Cauchy problem for 3D Navier-Stokes helical vortex filament

IF 1.5 1区 数学 Q1 MATHEMATICS
Francisco Gancedo, Antonio Hidalgo-Torné
{"title":"On the Cauchy problem for 3D Navier-Stokes helical vortex filament","authors":"Francisco Gancedo,&nbsp;Antonio Hidalgo-Torné","doi":"10.1016/j.aim.2025.110268","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the Cauchy problem for a helical vortex filament evolving by the 3D incompressible Navier-Stokes equations. We prove global-in-time well-posedness and smoothing of solutions with initial vorticity concentrated on a helix. We provide a local-in-time well-posedness result for vortex filaments periodic in one spatial direction, and show that solutions with helical initial data preserve this symmetry. We follow the approach of <span><span>[4]</span></span>, where the analogue local-in-time result has been obtained for closed vortex filaments in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Next, we apply local energy weak solutions theory with a novel estimate for helical functions in non-helical domains to uniquely extend the solutions globally in time. This is the first global-in-time well-posedness result for a vortex filament without size restriction and without vanishing swirl assumptions.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"471 ","pages":"Article 110268"},"PeriodicalIF":1.5000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825001665","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the Cauchy problem for a helical vortex filament evolving by the 3D incompressible Navier-Stokes equations. We prove global-in-time well-posedness and smoothing of solutions with initial vorticity concentrated on a helix. We provide a local-in-time well-posedness result for vortex filaments periodic in one spatial direction, and show that solutions with helical initial data preserve this symmetry. We follow the approach of [4], where the analogue local-in-time result has been obtained for closed vortex filaments in R3. Next, we apply local energy weak solutions theory with a novel estimate for helical functions in non-helical domains to uniquely extend the solutions globally in time. This is the first global-in-time well-posedness result for a vortex filament without size restriction and without vanishing swirl assumptions.
论三维纳维-斯托克斯螺旋涡旋丝的考奇问题
本文用三维不可压缩Navier-Stokes方程研究了螺旋涡细丝的柯西问题。我们证明了初始涡度集中在螺旋上的解的全局时适性和平滑性。我们给出了在一个空间方向上周期性涡丝的局域时间适定性结果,并证明了螺旋初始数据解保持了这种对称性。我们采用[4]的方法,在R3中得到了封闭涡旋细丝的实时模拟结果。其次,我们应用局部能量弱解理论,在非螺旋域上对螺旋函数进行了新的估计,从而在全局上唯一地推广了解。这是第一个没有尺寸限制和没有消失漩涡假设的涡丝的全局实时适定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信