An explainable ensemble-based intrusion detection system for software-defined vehicle ad-hoc networks

Shakil Ibne Ahsan , Phil Legg , S.M. Iftekharul Alam
{"title":"An explainable ensemble-based intrusion detection system for software-defined vehicle ad-hoc networks","authors":"Shakil Ibne Ahsan ,&nbsp;Phil Legg ,&nbsp;S.M. Iftekharul Alam","doi":"10.1016/j.csa.2025.100090","DOIUrl":null,"url":null,"abstract":"<div><div>Intrusion Detection Systems (IDS) are widely employed to detect and mitigate external network security events. Vehicle ad-hoc Networks (VANETs) continue to evolve, especially with developments related to Connected Autonomous Vehicles (CAVs). In this study, we explore the detection of cyber threats in vehicle networks through ensemble-based machine learning, to strengthen the performance of the learnt model compared to relying on a single model. We propose a model that uses Random Forest and CatBoost as our main ’investigators’, with Logistic Regression used to then reason on their outputs to make a final decision. To further aid analysis, we use SHAP (SHapley Additive exPlanations) analysis to examine feature importance towards the final decision stage. We use the Vehicular Reference Misbehavior (VeReMi) dataset for our experimentation and observe that our approach improves classification accuracy, and results in fewer misclassifications compared to previous works. Overall, this layered approach to decision-making - combining teamwork among models with an explainable view of why they act as they do - can help to achieve a more reliable and easy-to-understand cyber security solution for smart transportation networks.</div></div>","PeriodicalId":100351,"journal":{"name":"Cyber Security and Applications","volume":"3 ","pages":"Article 100090"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber Security and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772918425000074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intrusion Detection Systems (IDS) are widely employed to detect and mitigate external network security events. Vehicle ad-hoc Networks (VANETs) continue to evolve, especially with developments related to Connected Autonomous Vehicles (CAVs). In this study, we explore the detection of cyber threats in vehicle networks through ensemble-based machine learning, to strengthen the performance of the learnt model compared to relying on a single model. We propose a model that uses Random Forest and CatBoost as our main ’investigators’, with Logistic Regression used to then reason on their outputs to make a final decision. To further aid analysis, we use SHAP (SHapley Additive exPlanations) analysis to examine feature importance towards the final decision stage. We use the Vehicular Reference Misbehavior (VeReMi) dataset for our experimentation and observe that our approach improves classification accuracy, and results in fewer misclassifications compared to previous works. Overall, this layered approach to decision-making - combining teamwork among models with an explainable view of why they act as they do - can help to achieve a more reliable and easy-to-understand cyber security solution for smart transportation networks.
基于可解释集合的软件定义车辆 ad-hoc 网络入侵检测系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信