A novel machine learning-based workflow to capture intra-patient heterogeneity through transcriptional multi-label characterization and clinically relevant classification
IF 4 2区 医学Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Silvia Cascianelli, Iva Milojkovic, Marco Masseroli
{"title":"A novel machine learning-based workflow to capture intra-patient heterogeneity through transcriptional multi-label characterization and clinically relevant classification","authors":"Silvia Cascianelli, Iva Milojkovic, Marco Masseroli","doi":"10.1016/j.jbi.2025.104817","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives:</h3><div>Patient classification into specific molecular subtypes is paramount in biomedical research and clinical practice to face complex, heterogeneous diseases. Existing methods, especially for gene expression-based cancer subtyping, often simplify patient molecular portraits, neglecting the potential co-occurrence of traits from multiple subtypes. Yet, recognizing intra-sample heterogeneity is essential for more precise patient characterization and improved personalized treatments.</div></div><div><h3>Methods:</h3><div>We developed a novel computational workflow, named MULTI-STAR, which addresses current limitations and provides tailored solutions for reliable multi-label patient subtyping. MULTI-STAR uses state-of-the-art subtyping methods to obtain promising machine learning-based multi-label classifiers, leveraging gene expression profiles. It modifies standard single-label similarity-based techniques to obtain multi-label patient characterizations. Then, it employs these characterizations to train single-sample predictors using different multi-label strategies and find the best-performing classifiers.</div></div><div><h3>Results:</h3><div>MULTI-STAR classifiers offer advanced multi-label recognition of all the subtypes contributing to the molecular and clinical traits of a patient, also distinguishing the primary from the additional relevant secondary subtype(s). The efficacy was demonstrated by developing multi-label solutions for breast and colorectal cancer subtyping that outperform existing methods in terms of prognostic value, primarily for overall survival predictions, and ability to work on a single sample at a time, as required in clinical practice.</div></div><div><h3>Conclusions:</h3><div>This work emphasizes the importance of moving to multi-label subtyping to capture all the molecular traits of individual patients, considering also previously overlooked secondary assignments and paving the way for improved clinical decision-making processes in diverse heterogeneous disease contexts. Indeed, MULTI-STAR novel, reproducible and generalizable approach provides comprehensive representations of patient inner heterogeneity and clinically relevant insights, contributing to precision medicine and personalized treatments.</div></div>","PeriodicalId":15263,"journal":{"name":"Journal of Biomedical Informatics","volume":"166 ","pages":"Article 104817"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Informatics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532046425000462","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives:
Patient classification into specific molecular subtypes is paramount in biomedical research and clinical practice to face complex, heterogeneous diseases. Existing methods, especially for gene expression-based cancer subtyping, often simplify patient molecular portraits, neglecting the potential co-occurrence of traits from multiple subtypes. Yet, recognizing intra-sample heterogeneity is essential for more precise patient characterization and improved personalized treatments.
Methods:
We developed a novel computational workflow, named MULTI-STAR, which addresses current limitations and provides tailored solutions for reliable multi-label patient subtyping. MULTI-STAR uses state-of-the-art subtyping methods to obtain promising machine learning-based multi-label classifiers, leveraging gene expression profiles. It modifies standard single-label similarity-based techniques to obtain multi-label patient characterizations. Then, it employs these characterizations to train single-sample predictors using different multi-label strategies and find the best-performing classifiers.
Results:
MULTI-STAR classifiers offer advanced multi-label recognition of all the subtypes contributing to the molecular and clinical traits of a patient, also distinguishing the primary from the additional relevant secondary subtype(s). The efficacy was demonstrated by developing multi-label solutions for breast and colorectal cancer subtyping that outperform existing methods in terms of prognostic value, primarily for overall survival predictions, and ability to work on a single sample at a time, as required in clinical practice.
Conclusions:
This work emphasizes the importance of moving to multi-label subtyping to capture all the molecular traits of individual patients, considering also previously overlooked secondary assignments and paving the way for improved clinical decision-making processes in diverse heterogeneous disease contexts. Indeed, MULTI-STAR novel, reproducible and generalizable approach provides comprehensive representations of patient inner heterogeneity and clinically relevant insights, contributing to precision medicine and personalized treatments.
期刊介绍:
The Journal of Biomedical Informatics reflects a commitment to high-quality original research papers, reviews, and commentaries in the area of biomedical informatics methodology. Although we publish articles motivated by applications in the biomedical sciences (for example, clinical medicine, health care, population health, and translational bioinformatics), the journal emphasizes reports of new methodologies and techniques that have general applicability and that form the basis for the evolving science of biomedical informatics. Articles on medical devices; evaluations of implemented systems (including clinical trials of information technologies); or papers that provide insight into a biological process, a specific disease, or treatment options would generally be more suitable for publication in other venues. Papers on applications of signal processing and image analysis are often more suitable for biomedical engineering journals or other informatics journals, although we do publish papers that emphasize the information management and knowledge representation/modeling issues that arise in the storage and use of biological signals and images. System descriptions are welcome if they illustrate and substantiate the underlying methodology that is the principal focus of the report and an effort is made to address the generalizability and/or range of application of that methodology. Note also that, given the international nature of JBI, papers that deal with specific languages other than English, or with country-specific health systems or approaches, are acceptable for JBI only if they offer generalizable lessons that are relevant to the broad JBI readership, regardless of their country, language, culture, or health system.