Some more results on relativized Chaitin's Ω

IF 0.6 2区 数学 Q2 LOGIC
Liang Yu
{"title":"Some more results on relativized Chaitin's Ω","authors":"Liang Yu","doi":"10.1016/j.apal.2025.103586","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that, assuming ZF, and restricted to any <span><math><msub><mrow><mo>≤</mo></mrow><mrow><mi>T</mi></mrow></msub></math></span>-pointed set, Chaitin's <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>:</mo><mi>x</mi><mo>↦</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>U</mi></mrow><mrow><mi>x</mi></mrow></msubsup><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><msup><mrow><mi>U</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>(</mo><mi>σ</mi><mo>)</mo><mo>↓</mo></mrow></msub><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mo>|</mo><mi>σ</mi><mo>|</mo></mrow></msup></math></span> is not injective for any universal prefix-free Turing machine <em>U</em>, and that <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>U</mi></mrow><mrow><mi>x</mi></mrow></msubsup></math></span> fails to be degree invariant in a very strong sense, answering several recent questions in descriptive set theory. Moreover, we show that under <span><math><mrow><mi>ZF</mi></mrow><mo>+</mo><mrow><mi>AD</mi></mrow></math></span>, every function <em>f</em> mapping <em>x</em> to <em>x</em>-random must be uncountable-to-one over an upper cone of Turing degrees.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 8","pages":"Article 103586"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000351","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that, assuming ZF, and restricted to any T-pointed set, Chaitin's ΩU:xΩUx=Ux(σ)2|σ| is not injective for any universal prefix-free Turing machine U, and that ΩUx fails to be degree invariant in a very strong sense, answering several recent questions in descriptive set theory. Moreover, we show that under ZF+AD, every function f mapping x to x-random must be uncountable-to-one over an upper cone of Turing degrees.
关于相对化柴廷的Ω的更多结果
我们证明,假设 ZF,并限制于任何 ≤T 点集,柴廷的ΩU:x↦ΩUx=∑Ux(σ)↓2-|σ| 对于任何通用无前缀图灵机 U 都不是注入式的,并且ΩUx 在非常强的意义上不具有度不变性,这回答了描述集合论中最近的几个问题。此外,我们还证明了在 ZF+AD 下,映射 x 到 x-random 的每个函数 f 都必须在图灵度的上锥上是不可数到一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
12.50%
发文量
78
审稿时长
200 days
期刊介绍: The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信