Direct integration of ALS and MLS for real-time localization and mapping

Eugeniu Vezeteu , Aimad El Issaoui , Heikki Hyyti , Teemu Hakala , Jesse Muhojoki , Eric Hyyppä , Antero Kukko , Harri Kaartinen , Ville Kyrki , Juha Hyyppä
{"title":"Direct integration of ALS and MLS for real-time localization and mapping","authors":"Eugeniu Vezeteu ,&nbsp;Aimad El Issaoui ,&nbsp;Heikki Hyyti ,&nbsp;Teemu Hakala ,&nbsp;Jesse Muhojoki ,&nbsp;Eric Hyyppä ,&nbsp;Antero Kukko ,&nbsp;Harri Kaartinen ,&nbsp;Ville Kyrki ,&nbsp;Juha Hyyppä","doi":"10.1016/j.ophoto.2025.100088","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a novel real-time fusion pipeline for integrating georeferenced airborne laser scanning (ALS) and online mobile laser scanning (MLS) data to enable accurate localization and mapping in complex natural environments. To address sensor drift caused by relative Light Detection and Ranging (lidar) and inertial measurements, occlusion affecting the Global Navigation Satellite System (GNSS) signal quality, and differences in the fields of view of the sensors, we propose a tightly coupled lidar-inertial registration system with an adaptive, robust Iterated Error-State Extended Kalman Filter (RIEKF). By leveraging ALS-derived prior maps as a global reference, our system effectively refines the MLS registration, even in challenging environments like forests. A novel coarse-to-fine initialization technique is introduced to estimate the initial transformation between the local MLS and global ALS frames using online GNSS measurements. Experimental results in forest environments demonstrate significant improvements in both absolute and relative trajectory accuracy, with relative mean localization errors as low as 0.17 m for a prior map based on dense ALS data and 0.22 m for a prior map based on sparse ALS data. We found that while GNSS does not significantly improve registration accuracy, it is essential for providing the initial transformation between the ALS and MLS frames, enabling their direct and online fusion. The proposed system predicts poses at an inertial measurement unit (IMU) rate of 400 Hz and updates the pose at the lidar frame rate of 10 Hz.</div></div>","PeriodicalId":100730,"journal":{"name":"ISPRS Open Journal of Photogrammetry and Remote Sensing","volume":"16 ","pages":"Article 100088"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Open Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667393225000079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel real-time fusion pipeline for integrating georeferenced airborne laser scanning (ALS) and online mobile laser scanning (MLS) data to enable accurate localization and mapping in complex natural environments. To address sensor drift caused by relative Light Detection and Ranging (lidar) and inertial measurements, occlusion affecting the Global Navigation Satellite System (GNSS) signal quality, and differences in the fields of view of the sensors, we propose a tightly coupled lidar-inertial registration system with an adaptive, robust Iterated Error-State Extended Kalman Filter (RIEKF). By leveraging ALS-derived prior maps as a global reference, our system effectively refines the MLS registration, even in challenging environments like forests. A novel coarse-to-fine initialization technique is introduced to estimate the initial transformation between the local MLS and global ALS frames using online GNSS measurements. Experimental results in forest environments demonstrate significant improvements in both absolute and relative trajectory accuracy, with relative mean localization errors as low as 0.17 m for a prior map based on dense ALS data and 0.22 m for a prior map based on sparse ALS data. We found that while GNSS does not significantly improve registration accuracy, it is essential for providing the initial transformation between the ALS and MLS frames, enabling their direct and online fusion. The proposed system predicts poses at an inertial measurement unit (IMU) rate of 400 Hz and updates the pose at the lidar frame rate of 10 Hz.

Abstract Image

直接集成ALS和MLS实时定位和地图
本文提出了一种新的实时融合管道,用于集成地理参考机载激光扫描(ALS)和在线移动激光扫描(MLS)数据,以实现复杂自然环境下的精确定位和制图。为了解决由相对光探测和测距(lidar)和惯性测量引起的传感器漂移、影响全球导航卫星系统(GNSS)信号质量的遮挡以及传感器视场的差异,我们提出了一种具有自适应、鲁棒迭代误差状态扩展卡尔曼滤波器(RIEKF)的紧密耦合lidar-惯性配准系统。通过利用als衍生的先验地图作为全局参考,我们的系统有效地改进了MLS配准,即使在森林等具有挑战性的环境中也是如此。引入了一种新的粗精初始化技术,利用在线GNSS测量估计局部MLS帧和全局ALS帧之间的初始转换。森林环境下的实验结果表明,绝对轨迹精度和相对轨迹精度都有显著提高,基于密集ALS数据的先验地图相对平均定位误差低至0.17 m,基于稀疏ALS数据的先验地图相对平均定位误差低至0.22 m。我们发现,虽然GNSS不能显著提高配准精度,但它对于提供渐近渐近和渐近渐近图像帧之间的初始转换至关重要,从而实现它们的直接和在线融合。该系统以400 Hz的惯性测量单元(IMU)速率预测姿态,并以10 Hz的激光雷达帧速率更新姿态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信