{"title":"GAN-ML: Advancing anticancer peptide prediction through innovative Deep Convolution Generative Adversarial Network data augmentation technique","authors":"Sadik Bhattarai , Kil To Chong , Hilal Tayara","doi":"10.1016/j.chemolab.2025.105390","DOIUrl":null,"url":null,"abstract":"<div><div>Limited and imbalanced data hinder anticancer peptide (ACP) prediction, often resulting in over-fitting and poor performance on unseen peptides. To address these challenges, we propose a Deep Convolution Generative Adversarial Network (DC-GAN) based data augmentation method. This approach effectively expands the training dataset by generating peptides with anticancer properties, particularly underrepresented class such as N+ type ACPs, characterized by abundant positive residues in the N-terminus, which remain amnesic problem in anticancer peptide prediction. Compared to traditional methods like Synthetic Minority Over-sampling Technique (SMOTE) and SMOTE with Edited Nearest Neighbors (SMOTEENN), DC-GAN demonstrates superior performance by addressing both limited training samples and within-class imbalances, such as those between C+ and N+ type peptides. The proposed framework, GAN-ML cascade a linear model and an ensemble model, achieving accuracy rates of 82.96% (independent test), 96.06% (independent test), and 94.06% (5-fold cross-validation) for classifying peptides as anticancer, antimicrobial, or non-anticancer across various datasets integrating ACPs motif based authentication and physio-chemical properties based validation. These results highlight the efficacy of DC-GAN-based data augmentation in enhancing model generalization, improving performance by generating a samples with minority representation, and serving as a powerful tool for generative anticancer drug discovery.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"262 ","pages":"Article 105390"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925000759","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Limited and imbalanced data hinder anticancer peptide (ACP) prediction, often resulting in over-fitting and poor performance on unseen peptides. To address these challenges, we propose a Deep Convolution Generative Adversarial Network (DC-GAN) based data augmentation method. This approach effectively expands the training dataset by generating peptides with anticancer properties, particularly underrepresented class such as N+ type ACPs, characterized by abundant positive residues in the N-terminus, which remain amnesic problem in anticancer peptide prediction. Compared to traditional methods like Synthetic Minority Over-sampling Technique (SMOTE) and SMOTE with Edited Nearest Neighbors (SMOTEENN), DC-GAN demonstrates superior performance by addressing both limited training samples and within-class imbalances, such as those between C+ and N+ type peptides. The proposed framework, GAN-ML cascade a linear model and an ensemble model, achieving accuracy rates of 82.96% (independent test), 96.06% (independent test), and 94.06% (5-fold cross-validation) for classifying peptides as anticancer, antimicrobial, or non-anticancer across various datasets integrating ACPs motif based authentication and physio-chemical properties based validation. These results highlight the efficacy of DC-GAN-based data augmentation in enhancing model generalization, improving performance by generating a samples with minority representation, and serving as a powerful tool for generative anticancer drug discovery.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.