Leveraging evolutionary algorithms with a dynamic weighted search space approach for fraud detection in healthcare insurance claims

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Mohammad Tubishat , Dina Tbaishat , Ala’ M. Al-Zoubi , Abed-Elalim Hraiz , Maria Habib
{"title":"Leveraging evolutionary algorithms with a dynamic weighted search space approach for fraud detection in healthcare insurance claims","authors":"Mohammad Tubishat ,&nbsp;Dina Tbaishat ,&nbsp;Ala’ M. Al-Zoubi ,&nbsp;Abed-Elalim Hraiz ,&nbsp;Maria Habib","doi":"10.1016/j.knosys.2025.113436","DOIUrl":null,"url":null,"abstract":"<div><div>The healthcare industry has been suffering from fraud in many facets for decades, resulting in millions of dollars lost to fictitious claims at the expense of other patients who cannot afford appropriate care. As such, accurately identifying fraudulent claims is one of the most important factors in a well-functioning healthcare system. However, over time, fraud has become harder to detect because of increasingly complex and sophisticated fraud scheme development, data unpreparedness, as well as data privacy concerns. Moreover, traditional methods are proving increasingly inadequate in addressing this issue. To solve this issue a novel evolutionary dynamic weighted search space approach (DW-WOA-SVM) is presented in the current study. The approach has different levels that work simultaneously, where the optimization algorithm is responsible for tuning the Support Vector Machine (SVM) parameters, applying the weighting procedure for the features, and using a dynamic search space to adjust the range values. Tuning the parameters benefits the performance of SVM, and the weighting technique makes it updated with importance and lets the algorithm focus on data structure in addition to optimization objectives. The dynamic search space enhances the search range during the process. Furthermore, large language models have been applied to generate the dataset to improve the quality of the data and address the lack of good dimensionality, helping to enhance the richness of the data. The experiments highlighted the superior performance of this proposed approach than other algorithms.</div></div>","PeriodicalId":49939,"journal":{"name":"Knowledge-Based Systems","volume":"317 ","pages":"Article 113436"},"PeriodicalIF":7.2000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950705125004836","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The healthcare industry has been suffering from fraud in many facets for decades, resulting in millions of dollars lost to fictitious claims at the expense of other patients who cannot afford appropriate care. As such, accurately identifying fraudulent claims is one of the most important factors in a well-functioning healthcare system. However, over time, fraud has become harder to detect because of increasingly complex and sophisticated fraud scheme development, data unpreparedness, as well as data privacy concerns. Moreover, traditional methods are proving increasingly inadequate in addressing this issue. To solve this issue a novel evolutionary dynamic weighted search space approach (DW-WOA-SVM) is presented in the current study. The approach has different levels that work simultaneously, where the optimization algorithm is responsible for tuning the Support Vector Machine (SVM) parameters, applying the weighting procedure for the features, and using a dynamic search space to adjust the range values. Tuning the parameters benefits the performance of SVM, and the weighting technique makes it updated with importance and lets the algorithm focus on data structure in addition to optimization objectives. The dynamic search space enhances the search range during the process. Furthermore, large language models have been applied to generate the dataset to improve the quality of the data and address the lack of good dimensionality, helping to enhance the richness of the data. The experiments highlighted the superior performance of this proposed approach than other algorithms.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Knowledge-Based Systems
Knowledge-Based Systems 工程技术-计算机:人工智能
CiteScore
14.80
自引率
12.50%
发文量
1245
审稿时长
7.8 months
期刊介绍: Knowledge-Based Systems, an international and interdisciplinary journal in artificial intelligence, publishes original, innovative, and creative research results in the field. It focuses on knowledge-based and other artificial intelligence techniques-based systems. The journal aims to support human prediction and decision-making through data science and computation techniques, provide a balanced coverage of theory and practical study, and encourage the development and implementation of knowledge-based intelligence models, methods, systems, and software tools. Applications in business, government, education, engineering, and healthcare are emphasized.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信