Decoding spatial consistency of multi-Source land cover products in China: Insights from heterogeneous landscapes

IF 7.6 Q1 REMOTE SENSING
Yanglin Cui , Chunjiang Zhao , Yuchun Pan , Kai Ma , Xiaojun Liu , Xiaohe Gu
{"title":"Decoding spatial consistency of multi-Source land cover products in China: Insights from heterogeneous landscapes","authors":"Yanglin Cui ,&nbsp;Chunjiang Zhao ,&nbsp;Yuchun Pan ,&nbsp;Kai Ma ,&nbsp;Xiaojun Liu ,&nbsp;Xiaohe Gu","doi":"10.1016/j.jag.2025.104529","DOIUrl":null,"url":null,"abstract":"<div><div>High-resolution land cover (LC) data are essential for ecological monitoring and resource management, especially in heterogeneous landscapes containing diverse LC types. With the growing of available LC products, a comprehensive evaluation of their classification accuracy and spatial consistency is important for users’ selection and application. In this study, we compared eight widely used LC products in China, including ESA World Cover (ESA20), ESRI GLC10 (ESRI17, ESRI20), FROM-GLC10 (FROM-GLC17), CLCD (CLCD20), GlobeLand30 (GLB20), GLC_FCS30 (GLC_FCS20), and GLC_FCSD30 (GLC_FCSD20), to examine their performances at both national and regional scales. We employed pixel-wise overlay analysis, visually interpreted validation samples, and classical landscape metrics to assess overall consistency and classification accuracy. The results show that the 30m_combination (CLCD20, GLB20, GLC_FCS20, and GLC_FCSD20) exhibits higher overall consistency at the national scale, with perfect consistency exceeding 60 %. In contrast, the 10m_combination (ESA20, ESRI17, ESRI20, and FROM_GLC17) captures finer regional details but displays greater inconsistencies in central and western regions. ESA20 achieves the highest overall accuracy (OA) at 88.5 % (CI: 88.44 %–88.56 %), while FROM_GLC17 records the lowest at 82.79 % (CI: 82.73 %–82.85 %). Cropland, forest, water, and snow/ice demonstrate higher consistency and classification accuracy (F1-scores &gt; 80 %), whereas wetland, grassland, impervious surfaces, and bare land underperform in fragmented regions. Furthermore, spatial consistency is strongly associated with landscape metrics such as the aggregation index (AI) and contagion (CONTAG), which enhance consistency in large, contiguous patches (e.g., Northeast China Plain). Conversely, edge density (ED) and patch density (PD) show negative associations with consistency, highlighting persistent mapping challenges in fragmented regions (e.g., Yunnan-Guizhou Plateau and Qinghai-Tibet Plateau). These findings offer actionable insights for improving LC mapping in complex terrains and underscore the critical role of landscape metrics in advancing ecological monitoring and resource management.</div></div>","PeriodicalId":73423,"journal":{"name":"International journal of applied earth observation and geoinformation : ITC journal","volume":"139 ","pages":"Article 104529"},"PeriodicalIF":7.6000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of applied earth observation and geoinformation : ITC journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569843225001761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution land cover (LC) data are essential for ecological monitoring and resource management, especially in heterogeneous landscapes containing diverse LC types. With the growing of available LC products, a comprehensive evaluation of their classification accuracy and spatial consistency is important for users’ selection and application. In this study, we compared eight widely used LC products in China, including ESA World Cover (ESA20), ESRI GLC10 (ESRI17, ESRI20), FROM-GLC10 (FROM-GLC17), CLCD (CLCD20), GlobeLand30 (GLB20), GLC_FCS30 (GLC_FCS20), and GLC_FCSD30 (GLC_FCSD20), to examine their performances at both national and regional scales. We employed pixel-wise overlay analysis, visually interpreted validation samples, and classical landscape metrics to assess overall consistency and classification accuracy. The results show that the 30m_combination (CLCD20, GLB20, GLC_FCS20, and GLC_FCSD20) exhibits higher overall consistency at the national scale, with perfect consistency exceeding 60 %. In contrast, the 10m_combination (ESA20, ESRI17, ESRI20, and FROM_GLC17) captures finer regional details but displays greater inconsistencies in central and western regions. ESA20 achieves the highest overall accuracy (OA) at 88.5 % (CI: 88.44 %–88.56 %), while FROM_GLC17 records the lowest at 82.79 % (CI: 82.73 %–82.85 %). Cropland, forest, water, and snow/ice demonstrate higher consistency and classification accuracy (F1-scores > 80 %), whereas wetland, grassland, impervious surfaces, and bare land underperform in fragmented regions. Furthermore, spatial consistency is strongly associated with landscape metrics such as the aggregation index (AI) and contagion (CONTAG), which enhance consistency in large, contiguous patches (e.g., Northeast China Plain). Conversely, edge density (ED) and patch density (PD) show negative associations with consistency, highlighting persistent mapping challenges in fragmented regions (e.g., Yunnan-Guizhou Plateau and Qinghai-Tibet Plateau). These findings offer actionable insights for improving LC mapping in complex terrains and underscore the critical role of landscape metrics in advancing ecological monitoring and resource management.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International journal of applied earth observation and geoinformation : ITC journal
International journal of applied earth observation and geoinformation : ITC journal Global and Planetary Change, Management, Monitoring, Policy and Law, Earth-Surface Processes, Computers in Earth Sciences
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
77 days
期刊介绍: The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信