Heng Ding , Liangwen Wang , Nan Zheng , Zeyang Cheng , Xiaoyan Zheng , Jiye Li
{"title":"A novel hierarchical perimeter control method for road networks considering boundary congestion in a mixed CAV and HV traffic environment","authors":"Heng Ding , Liangwen Wang , Nan Zheng , Zeyang Cheng , Xiaoyan Zheng , Jiye Li","doi":"10.1016/j.trb.2025.103219","DOIUrl":null,"url":null,"abstract":"<div><div>Under dynamic traffic demand conditions, two issues must be addressed when perimeter control is implemented for congested areas of a road network. The first is to avoid intersection spillback at the boundaries and expansion of the congestion, and the second is to improve the output traffic efficiency of the congested areas to quickly relieve traffic congestion. To address these two issues and solve the traffic congestion problem, in this paper, we adopt a dynamic buffer area to store boundary queuing vehicles and use connected and autonomous vehicle (CAV) technology to improve the traffic flow transmission efficiency of a congested area. First, considering the macro- and micro-level relationships between the macroscopic fundamental diagram (MFD) regions and buffer areas (link- and node-based), a traffic flow transmission model of the network embedded in dynamic buffer areas is built. Second, based on road network state sensing, a dynamic adjustment method of buffer volume is presented to optimize MFD region boundary flows. Third, a hierarchical control method based on model prediction (HCMMP) is proposed for the scenario of a single kernel network. The HCMMP's upper level adopts model predictive control (MPC) to adjust the traffic flow into the dynamic buffer area, and the lower level uses real-time CAV information to optimize the signal timing in the dynamic buffer area. Finally, a complex cellular multiregional road network is selected as a scenario case, and the proposed HCMMP is analysed and compared with no control (NC), proportional integral (PI) control, MPC (both without a dynamic buffer area), PI control with a dynamic buffer area (PIBA) and hierarchical control method based on the PI (HCMPI). The results show that the proposed HCMMP can improve the traffic efficiency, outperforming the other control methods.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"195 ","pages":"Article 103219"},"PeriodicalIF":5.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261525000682","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Under dynamic traffic demand conditions, two issues must be addressed when perimeter control is implemented for congested areas of a road network. The first is to avoid intersection spillback at the boundaries and expansion of the congestion, and the second is to improve the output traffic efficiency of the congested areas to quickly relieve traffic congestion. To address these two issues and solve the traffic congestion problem, in this paper, we adopt a dynamic buffer area to store boundary queuing vehicles and use connected and autonomous vehicle (CAV) technology to improve the traffic flow transmission efficiency of a congested area. First, considering the macro- and micro-level relationships between the macroscopic fundamental diagram (MFD) regions and buffer areas (link- and node-based), a traffic flow transmission model of the network embedded in dynamic buffer areas is built. Second, based on road network state sensing, a dynamic adjustment method of buffer volume is presented to optimize MFD region boundary flows. Third, a hierarchical control method based on model prediction (HCMMP) is proposed for the scenario of a single kernel network. The HCMMP's upper level adopts model predictive control (MPC) to adjust the traffic flow into the dynamic buffer area, and the lower level uses real-time CAV information to optimize the signal timing in the dynamic buffer area. Finally, a complex cellular multiregional road network is selected as a scenario case, and the proposed HCMMP is analysed and compared with no control (NC), proportional integral (PI) control, MPC (both without a dynamic buffer area), PI control with a dynamic buffer area (PIBA) and hierarchical control method based on the PI (HCMPI). The results show that the proposed HCMMP can improve the traffic efficiency, outperforming the other control methods.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.